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1 Introduction
Person re-identification (ReID) aims to identify persons through non-overlapping cam-
eras. Identifying a person is to determine where and when the person appears in the 
recorded video set. Person re-identification grasps attention in the last decade due to its 
importance in surveillance applications, tracking, security monitoring, criminal investi-
gation, finding lost people in mall centers, and forensic investigation [1].

The surveillance cameras widespread everywhere may indicate that identifying per-
sons is a trivial task. However, person ReID systems face several challenges, some related 
to the person’s appearance (as pose), low-quality camera resolution, and illumination 
changes. Other challenges are related to the surrounding effects such as occlusion, 
fusion, and background cluttering, while others are related to the bounding box mis-
alignment [2].
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1.1  Video‑based person re‑identification

Based on the input query, person ReID can be categorized into: image-based person 
ReID, video-based person ReID, and image-to-video ReID [3]. Image-based ReID is 
widely discussed in previous publications, while video-based is less served than image-
based. In addition, this is the first review article dedicated to the deep video-based ReID. 
In a video-based ReID system, the input probe/query is a tracklet, multiple frames for 
the same person, while the output delivers the query into the gallery set.

Video-based person re-identification system consists of two major components: fea-
ture learning and metric learning. Feature learning aims to extract the intra- and inter-
frame-level representative features. Intra-frame-level means learning features through 
frame content (local frame-level features) as its salient regions, quality, and resolution. 
However, the inter-frame-level features learn the associated features over frames, i.e. 
global video features [4]. Metric learning aims to measure the distance between the 
probe and the gallery set in order to find the best matched person.

Figure  1 clarifies the deep video-based ReID (Deep Vid-ReID) block diagram. Deep 
Vid-ReID pipeline takes the input tracklet (sequence of bounding boxes for the same 
person) and passes them to a deep learning model that learns both the spatial and tem-
poral features for the input sequence. This model provides a representative information 
about salient information in the video. After that, a deep metric learning is introduced.

1.2  Review of state‑of‑the‑art surveys

Several surveys have reviewed the person identification techniques such as [1–10]. Each 
of them addressed the re-identification task from a different point of view, combining the 
image-based and the video-based approaches in one survey. Up to our knowledge, there 
is no survey which has a dedicated review about video-based ReID only. For instance, 
Almasawa et al. [1] reviewed the person identification based on the input type as image-
based, video-based, and image to video-based publications. A deep interest in the 
image-based approaches is discussed in their survey. They categorized the approaches 
into three main types: RGB-image, RGB-D image, and RGB-IR image. Compared to the 
discussion on image-based ReID approaches, video-based approaches are little served.

In addition, Wang et  al. [5] discussed person ReID based on: (1) local information 
extraction from cameras as attention mechanism, (2) metric learning techniques; as 

Fig. 1 Deep learning video‑based person ReID system pipeline
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distance learning, (3) data labeling problems, and (4) data types (video, depth, and IR 
ReID). The reviewed video-based approaches spotted mainly on the occlusion problems 
and redundant information within frames.

On the other hand, Leng et al. [6] focused on the open world scenario, and their review 
is based on the data procedure and efficiency. Besides Yaghoubi et al. [7] unified the cat-
egorization methods for the person ReID. A summary of different taxonomies was dis-
cussed based on the learning approaches, the identification settings, and the data types. 
The survey presented a general overview of person ReID.

Yadav et  al. [8] reviewed the image-based ReID approaches based on architecture, 
challenges (pose, lighting, scale variation, and view variation), modality-based (either 
RGB or cross-modality as IR), and metric-based learning. On the other hand, the video-
based ReID is discussed based on challenges and advantages. Only fourteen video-based 
publications are reviewed.

Ye et al. [2] presented the deep learning-based approaches from different perspectives, 
as open and closed world. Each perspective is discussed through certain points: deep 
feature learning, deep metric learning, and ranking methods. A new evaluation metric is 
introduced that reflects the cost of the correct matches. Video-based ReID is discussed 
as part of the closed world settings, where 17 video-based publications are only covered.

On the other side, Wu et al. [9] reviewed the deep learning-based approaches for re-
identification but with different view. The survey organized the techniques into six types 
related to identification, verification, metric learning, part-based, video-based, and data 
augmentation. They addressed ten video-based publications.

In this literature, we aim to conduct a literature review to propose recent re-identifica-
tion systems. The contributions of this survey are:

1. Presenting a literature review about the recent state-of-the-art methods for only 
video-based person re-identification for just deep learning models.

2. Presenting a comprehensive review of the datasets (either commonly used, bench-
mark datasets, or dedicated purpose), feature learning, and metric learning 
approaches.

3. Providing a comprehensive evaluation for each approach using a unified Rank 1 (R1) 
accuracy metric.

4. Presenting the challenges that face implementing person re-identification systems 
and recommendations to cope with these challenges.

5. Providing a detailed analysis of the state-of-the-art approaches over four benchmark 
datasets.

6. Introducing some trending applications and future directions that benefit from per-
son re-identification.

Up to our knowledge, this is the first survey that reviews only the video-based person 
re-identification approaches based on the utilized deep learning architecture for the last 
7 years. This survey differs from other surveys as follows:
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1. Previous surveys discussed person ReID for both image and video approaches and 
did not provide a sufficient comprehensive review of video-based approaches. Little 
video-based publications were reviewed for previous surveys.

2. This survey covers the recent approaches for different scenarios as closed-world and 
open-world. It introduces different case studies such as cloth change and its related 
problems. On the contrary, previous surveys customized their survey for certain sce-
narios.

3. The survey is ordered to be a document for those interested in implementing video-
based person ReID systems. It proposes the datasets at first, followed by deep fea-
tures and metric learning sequentially as the implemented systems flow work.

4. The survey does not just review the deep learning-based approaches only, as shown 
in Fig. 3, but also gives a comprehensive analysis and comparative evaluation for each 
approach over four benchmark datasets in separate section.

1.3  Survey scope

This survey evaluates the recently published articles according to Rank-1 (R1) accu-
racy evaluation metric over four benchmark datasets: MARS, DukeMTMC-Vid-
eoReID, PRID2011, and iLIDS-VID. Figure  2 and Table  1 show the number of the 
published work till 2024 that will be discussed through the presented review.

The paper is organized as follows: The video-based person ReID datasets are illus-
trated in Sect. 2. The deep feature learning is stated in Sect. 3. Section 4 presents the 
deep metric learning. The deep learning-based approaches are discussed in Sect. 5, 
while discussion and future work are declared in Sect. 6. Figure 3 shows the survey 
structure.

Fig. 2 Distribution of the number of publications from 2017 to 2024

Table 1 Number of reviewed papers in this survey

Year 2017 2018 2019 2020 2021 2022 2023 2024

No. of papers 15 22 19 28 44 19 14 4
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2  Video‑based person ReID datasets
In this literature, video-based ReID experiments are evaluated over some common 
benchmark datasets as MARS, PRID2011, iLIDS-VID, and DukeMTMC-VideoReID. 
Those datasets are covered through this survey, although some special-purpose data-
sets are also used for video-based ReIDs as: FGPR [11] and PoseTrackReID [12].

2.1  Benchmark datasets

MARS (Motion Analysis and Re-identification Set) [13] is considered the larg-
est video-based person ReID dataset. It is an extension of the Market1501 dataset 
which is related to image-based ReID problems. The MARS dataset is constructed 
from 1261 pedestrians. Six synchronized cameras are used to construct the dataset. 
Each pedestrian is at least captured by two cameras. A Generalized Maximum Multi-
Clique problem (GMMCP) tracker is used to automatically generate 20,478 video 
tracklets [14]. In addition, the dataset contains 3248 distractor sequences. MARS is 
evaluated by mean average precision mAP + and Cumulative Matching Characteristic 
(CMC) evaluation metrics. The dataset is publicly available [15]. A sample example is 
shown in Fig. 4.

PRID2011 The dataset images are gathered from two non-overlapping surveillance 
cameras [16]. 749 pedestrians are captured by one camera, and 385 pedestrians are 
captured by the other camera. Among those pedestrians, 200 persons appeared in 
both cameras. All images are cropped into 128 × 48 pixels. In clean and simple scene, 
the dataset images are captured with relatively illumination changes. PRID2011 is 

Fig. 3 The survey structure
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evaluated using CMC evaluation metric. And it is available to download [17]. Sample 
example is shown in Fig. 5.

iLIDS-VID [18] is initially created from iLIDS Multiple-Camera Tracking Scenario 
(MCTS) dataset [19]. The iLIDS-VID consists of 600 videos from 300 pedestrians. 
Each pedestrian video is captured by two non-overlapping cameras fixed in an air-
port arrival hall. It is challenging due to lighting changes, and background occlusions. 
Video lengths range from 23 to 192 frame. iLIDS-VID is evaluated using CMC evalua-
tion metric. Sample example is shown in Fig. 6.

Fig. 4 Sample example of MARS dataset. Credit goes to [13]

Fig. 5 Sample example of PRID2011 dataset. Credit goes to [16]
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DukeMTMC-VideoReID [20] Duke Multi-Target, Multi-Camera dataset is collected 
from Duke University campus to be used in person re-identification and multi-camera 
tracking research problems [21]. Eight synchronized cameras are used to capture the 

Fig. 6 Sample example of iLIDS-VID dataset. Credit goes to [18]

Fig. 7 Sample example of DukeMTMC-VideoReID dataset. Credit goes to [21]
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students through the lectures break. Over 2700 pedestrian, two million images are cap-
tured. The dataset is evaluated using CMC metric. Sample example is shown in Fig. 7.

2.2  Special purpose datasets

Cloth changing is an important issue in person ReID specially in working areas with 
common uniform or for the different educational stages schools. It is important to 
retrieve the person of interest regardless the cloth they wear. For this purpose, some 
video-based datasets are collected as [11, 12, 22] as well as some image-based datasets 
as [23].

FGPR Fine-grained Person ReID dataset is a specific purpose dataset [11]. It is 
designed for person re-identification with relatively similar clothes such as a uniform. 
The appearance features are not inevitable to discriminate persons. Thus, pose-based 
features such as motion-attentive and joint-specific local dynamic pose features are pro-
posed and robustly evaluated over FGPR. FGPR was collected from three groups (blue, 
green, and white) wearing the same clothes color. 358 pedestrians are captured with five 
cameras. 716 tracklets are formed and evaluated by CMC and mAP evaluation metrics. 
A sample example is shown in Fig. 8.

Deep change Long-term Person Re-identification: [22]. This dataset is categorized as a 
large-scale dataset. Seventeen cameras are used to capture 1082 identities gathered over 
12 months. This long period of recording provides a realistic personal appearance with 
different weather conditions and different walking styles. mAP and CMC are used as 
evaluation metrics. The dataset and code are publicly available [24]. A sample example is 
shown in Fig. 9.

PoseTrackReID [25] It is a dataset constructed to solve some multi-person pose-track-
ing problems such as person appearance in multiple frames with different occlusion and 
obstacle views [12]. It is sampled from the original Pose ReID dataset [26] such that vari-
ous sequences are sampled from the same video. Thus, occlusion and blurring are highly 
found.

Fig. 8 Sample of FGPR dataset. Credit goes to [11]
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SYSU-30k Wang et  al. [27] introduced the first large publicly available dataset, 
SYSU-30k. The original videos are downloaded from the internet TV programs. It is 
about 1000 raw videos. Annotators have collected 30,000 identities with weak super-
vision style with 84,930 bags. A sample example is shown in Fig. 10.

BUAA-Duke-Gait dataset As most Gait-based datasets, it is constructed under 
some rigid constraints, such that the persons have to walk in a straight line with no 
one appearing in the camera view. These conditions are not realistic for the com-
mon surveillance system. Thus, Shaoxiong Zhang et al. [28] constructed the BUAA-
Duke-Gait dataset. It is deducted from the original DukeMTMC-VideoReID dataset 
by extracting the binary silhouettes of the colored pedestrian appears in the original 
dataset. Thus, BUAA-Duke-Gait dataset is constructed with the aid of eight cameras 
with total 4,612 video and 3,623,488 frames. Figure 11 shows a sample of the dataset.

Fig. 9 Sample of Deepchange dataset. Credit goes to [22]

Fig. 10 Sample of SYSU‑30k dataset. Credit goes to [27]
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Davila et al. [29] constructed the Multiview Extended videos with Identity (MEVID) 
dataset. It is an extended version of the MEVA dataset [30]. MEVID is constructed to 
give wide variation for indoor/outdoor scenarios. Over 73  days and different camera 
views, 590 frames were captured using 33 cameras f 158 persons. Different wearing out-
fits form 8092 tracklets. MEVID is annotated using a semi-annotated tool designed from 
different models to handle object detection and tracking with various poses. Figure 12 
shows a sample of the dataset.

3  Feature‑based learning
Although videos provide richer information about pedestrians than images, there are 
much more redundant information in the frames sequence. Nevertheless, it is useful to 
find a method that captures the leveraging discriminative features and discard others.

Fig. 11 The BUAA‑Duke‑Gait dataset generation from the original DukeMTMC‑VideoReID dataset. Credit 
goes to [28]

Fig. 12 The MEVID dataset. Credit goes to [29]
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Video-based person ReID features are classified according to the feature representa-
tion level into frame level and video level, also called local and global, respectively. For 
frame level, spatial features are acquired, and temporal features are determined and 
aggregated to get the global level representation. In this survey, the spatial feature is cat-
egorized based on its type into attribute, pose, motion, and appearance. On the other 
hand, the temporal features are categorized into attention, transformers, LSTM, and 3D 
CNN-based approaches.

The performance of the proposed techniques is evaluated using the R1 score which is 
related to the top-ranked query results from the search in the gallery set [31].

3.1  Spatial Features

3.1.1  Attribute‑based approaches

Zhao et al. [32] used an attribute-based method for weighting each frame according to 
its dominating attribute. Each person can be described by some attributes that define 
him. They formulated the attributes into 6 groups: gender, head, shoes, upper body, 
lower body, and attachments. For each attribute, ResNet-50 is used to extract the fea-
tures from it. After that frames across the sequence are reweighted, such that higher 
weights are assigned to frames with the most dominating attributes. This helps in giving 
an effective representation of the detected person. On MARS dataset, 87% R1 accuracy 
is achieved.

Xu et  al. [33] acquired the spatial–temporal information from the video sequences. 
For each frame region, Siamese CNN (SCNN) network is utilized to extract the spatial 
information. SCNN also works on learning the frame-level representation over frames 
in the sequence, while the temporal relation between frames over the sequence level is 
obtained by RNN and the distance metric between frames. An attention model is then 
used to jointly represent all changes through a sequence of frames. The results show 62%, 
77%, and 44% R1 accuracy for iLIDS-VID, PRID2011, and MARS datasets, respectively.

Based on cameras low-resolution capabilities and limited availability of labeling data-
sets, Zhang [34] built their model to solve these difficulties. They used CNN to detect 
the attribute-based features such as head, torso, and legs. Then, several mining rules are 
used to refine those features. The results are combined with XQDA metric learning to 
convert the attribute-based classification into a re-identification task. An appearance 
model [35] is also attached to finalize the re-identification system. PEdesTrian Attribute 
(PETA) dataset is used for attribute training, while iLIDS-VID and PRID2011 are used 
for validation and testing. 60.3% and 73.2% R1 ranking accuracy are achieved.

Yin et al. [36] grabbed the attention toward the problem of person ReID with similar 
clothes, i.e. those have the same uniform. Those people usually have the same appear-
ance and the same cloth color, and thus, the dependency on appearance as discrimina-
tive features is disappointing. For this purpose, Yin et al. defined this case as fine-grained 
ReID and proposed two dynamic pose features to solve it: motion-attentive and joint-
specific local dynamic pose features. The motion-attentive features aim to generate 
masks on important areas in each frame using RNN, while the joint-specific pose fea-
tures aim to estimate the pose for each body region per frame using CNN. The proposed 
model achieved 87.1% R1 accuracy for their self-built dataset and 82.9% over MARS 
dataset.
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Song et al. [37] used multi-task CNN to learn nine deterministic attributes for feature 
extraction. Some of the attributes are stationary attributes such as upper body, lower 
body, hair, and gender, while the bag is used as a dynamic attribute. In training, the nine 
attributes for each person are learned through CNN and then get more robust by using 
the local maximal co-occurrence (LOMO) descriptor [38]. long short-term memory 
(LSTM) is used then for frame aggregation. On MARs, 85.8% R1 accuracy is achieved 
while 95.6% and 83.9% for PRID2011 and iLIDS-VID, respectively.

Chen et  al. [39] have used the Attribute-aware Identity hard Triplet Loss (AITL) to 
solve the Variance among Different Positives (VDP) problems. Although the triplet loss 
discards the anchor from the negative samples, there are some similarities between the 
positive samples that have to be reduced for best-ranking results. With the aid of the 
spatial–temporal attribute-driven attention model, the VDP problem is decreased. ID 
relevant attributes as bottom and top color and ID irrelevant attributes as occlusion, 
pose, and motion were used. 88.2% R1 accuracy results on MARs is achieved.

Song et al. [40] introduced a Two-Stage Attribute Constraints (TSAC) network. The 
two-stage network helps in extracting the image level features and the sequence-level 
features using CNN and LSTM, respectively. The image-based stage is introduced for 
four static attributes: upper body, lower body, hair, and gender. The fifth dynamic attrib-
ute, bag, is introduced through the sequence-level features as a discriminating feature. 
TSAC attained 84.1%, 64.3%, and 52.6% R1 classification accuracy over PRID2011, 
iLIDS-VID, and MARs datasets, respectively.

Chai et al. [41] proposed Attribute Salience-Assisted Network (ASA-Network) to solve 
background and pose variance issues. The ASA-Net is composed of five branches to 
learn the ID-relevant attributes such as hair, gender, and upper body cloth and the ID-
irrelevant attributes such as pose and motion. Five different metric learnings are used in 
ASA-Net such as triplet loss, cross-entropy, center loss, binary cross-entropy, and pose 
and motion invariant loss. ASA-Net accomplished 90.2% and 97.6% R1 accuracy results 
over MARS and DukeMTMC-Video ReID datasets, respectively.

Multiple feature fusion Network (MPFF-Net) is proposed by Song et  al. [42]. Both 
hand-crafted features and deeply learned features are introduced. The LOMO descriptor 
is used as hand-crafted features which is for frame-level feature learning. Then, bilin-
ear LSTM (Bi-LSTM) deeply aggregated those features in forward and backward direc-
tions. They tested MPFF over iLIDS-VID, PRID2011, and MARs datasets. R1 accuracies 
results are: 88.1%, 73.1%, and 84.5%, respectively.

Using six attribute groups, Zhao et al. [32] described each person depending on these 
attribute groups and reweighted each attribute according to its appearance in the frame. 
The six attribute groups are related to gender, head and shoulder, upper body, lower 
body, shoes, and attachments. Zhao, Yiru, et al. get the benefits of transfer learning from 
the attribute recognition dataset (RAP) [43] into the ReID problem instead of supervised 
learning. The built model resulted in achieving 82.6%, 91.7%, and 81.5% R1 accuracy 
over MARS, PRID2011, and ILIDs-VID datasets, respectively.

Chen et  al. [44] have annotated the MARs dataset into 16 attributes. The attributes 
are divided into identity-relevant (such as gender, bottom, and carrying a handbag) and 
behavior-relevant (pose and motion). A multichannel network is built using CNN and 
temporal attention. The network is trained on the annotated dataset. The model attained 
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87.01% R1 accuracy on MARs, while 89.31% R1 accuracy on DukeMTMC-VideoReID 
dataset. The attribute-based approaches are summarized in Table 2.

For the attribute-based approaches, it is noticed that composing the ID relevant attrib-
utes with ID irrelevant ones such as motion and pose achieves better results as in [41, 
44]. The ASA-Net [41] outperforms other high results by 2% over MARS and more 
than 8% over DukeMTMC-VideoReID. Their approach was not tested over PRID2011 
and iLIDS-VID datasets. On the other hand, only stationary ID attributes system results 
could be enhanced by using temporal learning architecture as LSTM [37]. In [37], com-
peting results on PRID2011 are acquired by about 4% R1 accuracy. The combination of 
hand-crafted features at spatial and temporal levels did not introduce better results as in 
[42]. It is recommended in the future work to try another temporal feature discrimina-
tor such as the 3D CNN over the attribute-based features and evaluate the results for 
the ID-attribute features. Furthermore, it is also recommended to combine both ID and 
non-ID attribute features and introduce them to robust temporal LSTM, 3D CNN, and 
attention models for achieving better results.

3.1.2  Appearance‑based approaches

Appearance is one of the commonly used features for person ReID. It has been addressed 
for image- and video-based systems. Here, a video-based person ReID system would be 
reviewed.

Zhang et al. in [45] used multiple CNNs to extract the salient appearance features from 
certain representative frames instead of the whole sequence. Depending on the person’s 
walking profile, the minima and maxima of the flow energy profile (FEP) signal [46] are 
exploited in selecting the salient frames. Then, multiple CNNs followed by pooling layers 
are used to extract features from the selected frames. Those features are further passed 
into metric learning for re-identification. Over MARS, iLIDS-VID, PRID2011, and SDU-
VID dataset, Zhang et al. got 55.5%, 60.2%, 83.3%, and 89.3% R1 accuracy, respectively.

For sequential frames, different person poses may lead to different bounding box sizes 
which causes misalignment in appearance feature learning for the convolution process 
in CNN and hence the appearance features will be destructed. For this purpose, Gu 

Table 2 The attribute‑based approaches (R1 accuracy in %)

The bold values indicate the best R1 accuracy results

Authors Method MARS DukeMTMC‑Video 
ReID

PRID2011 iLIDS‑VID

Zhao et al. [32] Attribute‑based 87 – – –

Xu et al. [33] 44 – 77 62

Zhang et al. [34] – – 60.3 73.2

Yin et al. [36] 82.9 – – –

Song et al. [37] 85.8 – 95.6 83.9

Chen et al. [39] 88.2 – –

Song et al. [40] 52.6 – 84.1 64.3

Chai et al. [41] 90.2 97.6 – –

Song et al. [42] 84.5 – 73.1 88.1
Zhao et al. [32] 82.6 – 91.7 81.5

Chen et al. [44] 87.01 89.31 – –
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et al. [47] proposed the appearance-preserving 3D convolution (AP3D) framework. The 
AP3D has an appearance-preserving module with a 3d convolution kernel that works on 
learning the adjacent and central features map between two frames. Over MARS, Duke-
MTMC-VideoReID, and iLIDS-VID, 90.7%, 97.2%, and 88.7% R1 accuracy is achieved, 
respectively.

3D CNN is used to learn the temporal and spatial cues in video-based ReID. However, 
due to its large number of parameters, Li et al. [48] added multi-scale 3D layers (M3D) 
that have different temporal ranges to reduce the number of training and optimization 
parameters. A two-stream network is proposed for spatial and temporal features learn-
ing, and the M3D is only presented in the temporal stream. 84.3%, 94.4%, and 74% R1 
accuracy is achieved for MARS, PRID2011, and iLIDS-VID datasets, respectively.

Although the M3D layers in [48] improved the results, Li et al. [25] have modified the 
proposed M3D architecture to define local and global M3D. The local M3D is intro-
duced as in [48] in order to acquire the spatial–temporal frame features, while the global 
M3D is proposed to avoid the misalignment between the adjacent frames. Experimental 
results show that the R1 accuracy for MARS, PRID2011, and iLIDS-VID is improved to 
reach 86.3%, 96.6%, and 86.6% for each, respectively.

The global features do not capture the relation between adjacent frames only, and they 
are also useful for reducing the occlusion effect through the whole sequence as in [49]. 
Li et al. have proposed the global features in two ways: short term and long term. The 
short-term global features are implemented by dilated convolution to get the appear-
ance features of the adjacent frames, while the long-term are implemented by the self-
attention model for inconsecutive frames. Results show that the R1 accuracy is 87.02% 
for MARS, 94.6% for PRID2011, and 96.29% for DukeMTMC-VideoReID.

The frame misalignment is counted as a problematic issue for video-based ReID. The 
non-local block is used as a part of the framework in [50]. Liao et al. [50] used 3D CNN 
to represent the spatial–temporal relationship through frames; however, the non-local 
block is used for misalignment problem and long-term video sequence relations. The 
experimental results show 84.3%, 91.2%, and 81.3% R1 accuracy on MARS, PRID2011, 
and iLIDS-VID datasets, respectively.

To conclude, appearance-based features play a key role in representing video spatial 
features. It is noticed that the deep appearance feature achieves high accuracy. However, 
appearance may be affected by sequence misalignment. Thus, AP3D in [47] has an effi-
cient appearance feature map that saves the appearance and reduces the misalignment 
effect more than the traditional CNN proposed in [45] for appearance representation. In 
addition, supporting the appearance-based features with a deep-based temporal feature 
backbone enhances the results. AP3D in [47] outperformed [45] work by more than 35% 
and 22% over MARS and iILDS-VID, respectively, by applying 3D CNN for the deep 
temporal guidance. It is recommended in the future researches to propose an experi-
ment that constructs 2D, and 3D graph maps then learn the appearance features over 
them. The appearance-based approaches are summarized in Table 3.

3.1.3  Action‑based approaches

Action-based approaches depend on the person’s motion action. It is addressed in two 
manners: using the pose information for each tracklet or using the skeleton structure.
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Pose is one of the discriminative features for video-based person ReID. It is widely 
used in both image-based ReID [51–54] and video-based ReID [55–58].

The pose could be estimated coarsely or finely [8, 59]. In coarse pose estimation, 
the pose is estimated according to camera parameters such as calibration settings, 
ground plane position, 3D position, and person velocity as in [45, 46]. Fine estimation 
corresponds to person joint key points that were recently estimated by deep-based 
models such as deep cut [60], pose-driven deep convolutional (PDC) [58], and pose-
invariant embedding (PIE) [61]. Both coarse and fine pose estimation is integrated in 
many frameworks to solve the body parts misalignment problem [61].

For that purpose, Wei et al. [55] built a posture-based video ReID in two sequential 
stages: pose alignment module and multi-scale structure learning module. The pose 
alignment module extracts a representative local frame-level feature by selecting the 
best posture frames. These frames are selected by comparing the reference pose set and 
the estimated pose for each frame. The pose feature according to each body region is 
hence extracted. Moreover, the multi-scale structure learning module exploits the rela-
tionship among those regions features by using a graph convolution network (GCN). 
MARS, iLIDS-VID, and PRID2011 datasets are used for model evaluation. 90.2%, 85.5%, 
and 94.7% R1 accuracies are achieved for each dataset, respectively.

Gao et al. [56] also proposed pose estimation as an efficient video sequence align-
ment tool. The distance between ankles is used to define the pose, while a set of poses 
is defined as reference poses. Hence, a temporal representation is achieved. On the 
other hand, the body regions are defined as spatial features. Cross-view quadratic dis-
criminant analysis (XQDA) is used as a distance metric. 92.9% and 74.6% R1 accura-
cies regarding PRID2011 and iLIDS-VID datasets are accomplished, respectively.

As a solution for the frames misalignment problem, the coarse and fine pose was 
introduced by Sarfraz et  al. [52]. According to the camera view, the coarse pose is 
defined as front, back, and side. For each view, a three-part CNN is used to extract 
the pose information to propose a robust representation. Also, for each view, a fine 
pose belonging to fourteen body joints is used by applying a deeper cut module [60]. 
In a plus, a new re-ranking technique based on expanded cross-neighborhood is pro-
posed for increasing the retrieval performance. The system is tested on image and 
video-based datasets. 64.6% R1 accuracy is achieved on MARS.

The skeleton information is a good motion guidance. Elaoud et al. [62] used the per-
son skeleton as input to the tracklets. The shape of the skeleton is projected on the 

Table 3 The appearance‑based approaches (R1 accuracy in %)

The bold values indicate the best R1 accuracy results

Author Method MARS DukeMTMC‑
VideoReID

PRID2011 iLIDS‑VID

Zhang et al. [45] Appearance‑based 55.5 – 83.3 60.2

Gu et al. [47] 90.7 97.2 – 88.7
Li et al. [48] 84.3 94.4 74

Li et al. [25] 86.3 – 96.6 86.6

Li et al. [49] 87.02 96.29 94.6 –

Liao et al. [50] 84.3 91.2 81.3
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Grassmann manifold [63], and each person’s camera view is weighted dynamically 
according to its joint distance on Grassmann. Those weights are classified by random 
forest. Results on iLIDS-VID and PRID2011 show 58.06% and 87.02% R1 accuracy, 
respectively.

Similarly, posture structure and action constraints—Hypergraph Pedestrian Video 
Re-identification (PA-HPAReid), are proposed by Hu et al. [64] to avoid pose change in 
re-identification. The color and posture structures are estimated by CNN with the aid 
of the pedestrian skeleton estimation method [65]. Then, GCN is used as a graph mod-
eling for the estimated skeleton joints. Relative entropy loss is used as metric learning for 
the salient regions. On MARS, iLIDS-VID, and PRID2011, PA-HPAReid attained 89.9%, 
87.9%, and 95.9% R1 accuracy, respectively.

Spatial–temporal Correlation and Topology Learning CTL is proposed by Liu et  al. 
[66]. In CTL, for the input video sequence, the person’s key points are estimated and 
then categorized into three scales as multi-scale extraction. For each scale, the 3D graph 
is constructed, and the local features are extracted from it. These scales are then fused to 
extract the global feature. Experiments on MARS and iLIDS-VID show 91.4% and 89.7% 
R1 accuracies, respectively.

Wei et  al. [67] fused the action-based features with the appearance-based features 
through 3D CNN. The action-based information is gathered in a pyramidal manner 
using three channels: R, G, and B. Each channel uses five consecutive frames to attain 
the motion information in two steps by recording the change in motion between frames. 
Further triplet loss is introduced for the output of the fused appearance and action net-
work result. Over MARS, iLIDS-VID, and PRID2011, 86.7%, 86.5%, and 94.6% R1 accu-
racies are accomplished, respectively.

Graph-based solutions have recently been introduced for image- and video-based 
ReID for different purposes such as noisy label reduction as in [68] and in [69] to explore 
the correlation between body parts as in Lu et  al. work [69]. The correlation is deter-
mined using a dynamic hypergraph over the temporal skeletal information. A mix of 
joint-centered, bone-centered hypergraphs, and multi-granularity spatial–temporal 
information are presented as a framework for better feature representation. Over iLIDS-
VID, PRID2011, and MARS, 92%, 96.9%, and 92.5% R1 accuracies are accomplished.

For action-based features, it is noticed that the graph representation is suitable for 
improving the posture points. The 3D graph structure in Liu et al. [66] has a competing 
result over others as in [57, 64]. There is about 1.5% and 1.8% improvement over MARS 
and iLIDS-VID, respectively. PRID2011 is not tested by [66], while the competing [57, 
66] has a test over PRID2011 achieving 95% R1 results. Although 3D CNN achieved less 
in [67], it is recommended to use it with graph construction based on [60, 66] work. 
Results for the action-based approaches are summarized in Table 4.

3.1.4  Motion‑based approaches

3.1.4.1 Gait-based approaches Person gait is categorized as one of the human soft 
biometrics [65–72]. Gait recognition for person re-identification depends on the pedes-
trian’s walking style as the gait has a unique pattern for the pedestrian movement. For-
tunately, gait has some important characteristics: It is unique and can be measured for 
any distance [70]. Unfortunately, it is affected by aging and illness. Nambiar et al. [65–72] 
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summarized the gait-based approaches in re-identification and categorized them into five 
categories based on: (1) camera settings, (2) pose and gait direction (either pose-depend-
ent or pose-independent), (3) feature extraction model (model-based and model-free), 
(4) classification approach (learning and non-learning approaches), and (5) application 
scenario (either spatial or temporal approaches).

Other work by Sepas-Moghaddam et  al. in [71] summarized the deep gait recog-
nition approaches. They noticed the transition in the last 6  years from non-deep-
based approaches into deep-based. Sepas-Moghaddam categorized the deep-based 
approaches into some aspects as body representation, temporal representation, fea-
ture representation, and finally according to nine different deep architectures.

For skeleton-based datasets (as CASIA [72], OU-ISIR [73], and OU-MVLP [74]), 
Elharrouss, Omar, et  al. [75] used two CNN models for gait-based ReID. The input 
frames are imported to background and segmentation models to separate the skele-
ton from frames, and then, the Gait Energy Image (GEI) is extracted by the first CNN. 
GEI helps in estimating the gait angle. The second CNN helps in verifying the gait 
angle. Rao et  al. [76] introduced self-supervised learning to learn the gait from the 
unlabeled skeleton. The self-learned model could reconstruct the unlabeled skeleton, 
and then, a locality-aware attention mechanism is introduced to save the video inter- 
and intra-skeleton sequence and get the final gait encoding feature representation.

Zhang et al. [28] proposed an effective gait recognition method that works under the 
color silhouettes and has 94% R1 accuracy for the ReID task compared to the binary 
silhouettes which have 78.24% R1 accuracy. The proposed gait recognition method 
consists of four modules: random tracklet sampling, alignment network, backbone 
network, and patch pyramid mapping. The experiments are held on the BUAA-Duke-
Gait dataset which is constructed specially for realistic gait-based scenarios.

A recent published review by Rahi et al. [77] reviewed the gait-based person ReID 
and covered old and recent approaches for image- and video-based. They do not focus 
on the video-based approaches.

Instead of working on RGB frames, Zhao et  al. [78] used the silhouette mask for 
frames as a discriminative gait sequence that has rich motion and appearance cues. 
Then, an attention module is presented to the appearance and gait features. Results on 
MARS and DukeMTMC-VideoReID have 84.3% and 96% R1 accuracies, respectively.

The frames masking is also presented by Chang et  al. [79]. They also exploit the 
appearance and gait-based features. The masking is computed as foreground to 

Table 4 The action‑based approaches (R1 accuracy in %)

Author Method MARS DukeMTMC‑
VideoReID

PRID2011 iLIDS‑VID

Sarfraz et al. [52] Action‑based 64.6 – – –

Wei et al. [55] 90.2 – 94.7 85.5

Gao et al. [56] – – 92.9 74.6

Elaoud et al. [62] – – 87.02 58.06

Hu et al. [64] 89.9 – 95.9 87.9

Liu et al. [66] 91.4 – – 89.7
Wei et al. [67] 86.7 94.6 86.5
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background portion, which covers at least 15% of the foreground. They called the 
masked dataset “Mask-MARS.” A gait set using CNN is proposed as a temporal dis-
criminator. R1 results on Mask-MARS achieved 87.3%.

To conclude, the gait-based approaches are massively evaluated for different data-
sets especially for the cloth change cases as in [80–82]. The idea is to extract the frames 
appearance and GEI and then exploit the temporal features with an appropriate discrim-
inator. To achieve better results in the future, it is recommended to use LSTM or 3D 
CNN or attention model as a temporal feature backbone [78]. In addition, it is interest-
ing to try the 3D shape person modeling instead of silhouettes for person representation 
and then propose the resulting model over the four-benchmark datasets.

3.1.4.2 Optical flow-based approaches Optical flow defines the object’s motion through 
consecutive frames within a sequence. It is determined by the relative distance between 
the object and the camera [83]. The optical flow is used earlier as a representative feature 
of video tracklets as in [84]. McLaughlin et al. in [84] used color and optical flow as input 
features to their network. Color feature represents the appearance metric, while optical 
flow represents the motion metric. Afterward, CNN, RNN, and temporal pooling are 
introduced as complete feature representation for the whole sequence. Siamese network 
is used then for training. Experiments over iLIDS-VID and PRID2011 datasets show 58% 
and 70% R1 accuracies, respectively.

In addition to its motion variation detection capability, optical flow map works as 
an appearance mask for persons in each frame [85]. For this purpose, Kiran et al. [85] 
inspired his work from Cho et al. [86] and merged the optical flow feature with the sali-
ent appearance feature for long-term temporal feature aggregation. The attention net-
work exploits the salient appearance frame features for both the original frames and its 
corresponding optical flow map. Then, weighted feature aggregation weights the most 
salience frames for the final representation. Experiments over MARS, DukeMTMC-Vid-
eoReID, and iLIDS-VID show 86.6%, 96.7%, and 88.1% R1 accuracy, respectively.

In Chung et  al. [87], two separate Siamese networks are exploited to learn the spa-
tial–temporal co-occurrence features from both the raw RGB and the optical flow 
map frames separately. Each network representation later is proposed to the weighted 
features. Those features compare the Siamese cost for both branches and choose the 
best. Experiments over iLIDS-VID and PRID2011 show 60% and 78% R1 accuracy, 
respectively.

Chen et al. [88] proposed a reinforcement learning A3D attention network. The net-
work learns the spatial temporal features from the 3 bins: the raw RGB frames, optical 
flow map frames, and the RNN temporal representation. The attention model is used to 
learn the salient features of each bin. The resulting representation selection is formu-
lated in the Markov model and optimized by reinforcement learning. R1 accuracy results 
show 95.1%, 87.9%, and 86.3% for PRID2011, iLIDS-VID, and MARS, respectively.

The optical flow maps and the raw RGB frames are concatenated into a single channel 
and fed as an input to a competitive snippet-similarity aggregation network proposed by 
Chen et al. [89]. For both gallery and probe sequences, short length snippets are formed 
and aggregated from the original frames with the guidance of deep co-attention simi-
larity model. The resulting snippets have less intra-frame variation, and thus, when the 
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probe snippet is requested, simple matching with similar gallery snippets is performed. 
The R1 accuracy results for iLIDS-VID, PRID2011, and MARS are: 85.4%, 93.0%, and 
86.3%, respectively.

To conclude, it is noticed that combining the optical flow map with the appearance fea-
ture obtains better results as in [85]. Around 0.3% improvement on MARS and 0.2% on 
iLIDS-VID proves that the proposed systems [85, 88] are competing. For better results, 
it is recommended to do frame weighting as in [85] and apply it to the A3D architecture 
proposed in [88]. The optical flow approaches are summarized in Table 5.

3.1.5  Semantic‑based approaches

Hou et al. [90] also work on global spatial–temporal context. Interaction–Aggregation-
Update (IAU) network for image and video ReID is proposed. The upper body part is 
noticed to hold the more discriminative features for the person. Therefore, two networks 
are constructed: spatial–temporal IAU (STIAU), which aggregate the body part local 
features by CNN, and a channel IAU that forms the temporal features for the seman-
tic body parts across all frames. The interaction between STIAU and CIAU is modeled. 
90.2% R1 accuracy is achieved on MARS and 89.3% over DukeMTMC-VideoReID.

3.2  Temporal Features

3.2.1  Attention‑based approaches

Attention in images means focusing on the important /salient parts of the image. Thus, 
attention-based methods could be used to pick the local and significant features in a 
given Bounding Box, (BB) [91]. To extract the strict BB information, deep learning-based 
approaches are used to solve the misalignment problem [92]. Recently, an attention 
mechanism has been proposed to attain the ReID task. [92–101] performed image-based 
person ReID and tested their approaches on Market1501, DukeMTMC-ReID, CUHK03-
NP, and MSMT17 datasets. For example, JWASS in [102] eliminated the non-important 
background (as the common background between various persons), which resulted in 
reducing the model performance.

For this reason, Ning et al. in [102] proposed the attention mechanism for the back-
ground removal of non-salient regions and focus on the person’s salient region features. 
The attention framework in their model consists of two branches: The first is the back-
bone ResNet with a background salience module, and the second branch is the atten-
tion-aware module which has an attention generator, attention map, and feature fusion 

Table 5 The optical flow‑based approaches (R1 accuracy in %)

The bold values indicate the best R1 accuracy results

Author Method MARS DukeMTMC‑
VideoReID

PRID2011 iLIDS‑VID

McLaughlin et al. [84] Optical flow‑based – – 70 58

Kiran et al. [85] 86.6 96.7 – 88.1
Chung et al. [87] – – 78 60

Chen et al. [88] 86.3 – 95.1 87.9

Chen et al. [89] 86.3 – 93.0 85.4
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to form the final representative feature. Their work was tested on Market1501 dataset 
and achieved 96.8% R1 accuracy.

Attention models were also applied for video-based person ReID to discover salient 
regions [103], to select important frames and clips [104–106], and to learn discrimina-
tive representations [33, 106, 107].

Chen et al. [88] noticed that many spatial–temporal attention methods extract the sali-
ent regions in each frame distinctly. They worked on solving this independence of tra-
ditional salient attention models. Thus, a framework of multiple stages is constructed. 
The first stage extracts the appearance and optical flow stream features and aggregates 
them over frames to propose global representation. The second stage uses RNN to 
learn the location of salient attention regions in frames. Reinforcement learning is used 
to optimize the most representative frames. Over iLIDS-VID, PRID2011, and MARS, 
the framework is evaluated and accomplished 87.8%, 95.1%, and 86.1% R1 accuracy, 
respectively.

Shu et al. in [108] extracted the important discriminative cues from frames as shoes, 
hair, and bag using the attention mechanism. Additional cues (that extract the appear-
ance and the color) are detected beside the global attention. Multiple spatial and tem-
poral attention models were used. The spatial attention model split the feature map into 
channels and got the attention weights for each. R1 accuracy results on MARS are raised 
to 89.0% rather than 83.7% for COSAM [109].

Wu et al. [110] used the attention network to learn the salient regions in frames. The 
spatiotemporal representation is described by their model. The model consists of CNN 
that learns the spatial features for each frame, and then, the Siamese network with GRUs 
and attention model explore the salient regions and neglect other non-salient regions. 
The R1 accuracy results are 61.2%, 74.8%, and 69.7% over ILIDS-VID, PRID2011, and 
MARS, respectively.

The occlusion and pose variation problems are reduced by Fu et al. [106]. Clip repre-
sentation for each person is constructed, and salient frames are extracted. The frames 
are proposed to CNN to extract the spatial features followed by the attention module. 
An attention score is assigned for each frame to form the attention score matrix. Frames 
with high attention scores mean that it has a salient region. The fusion between salient 
frames forms the final clip representation. The proposed method R1 accuracy results are 
86.3% and 96.2% for MARS and DukeMTMC-VideoReID, respectively.

Zhang et al. [111] proposed an attention module for multiple granularities. Granular-
ity is defined as regions with different sizes [111]. The spatial features are extracted by 
ResNet-50, and then, attention scores for the set of reference feature nodes (S-RFN) are 
generated. R1 accuracy results are 88.8%, 88.6%, and 95.9% for MARS, iLIDS-VID, and 
PRID2011, respectively.

Although several approaches were proposed for temporal attention, Chen et  al. 
[112] aimed to get more accurate sequence-level features for the salient frames. Thus, 
a dual-constrained guided network (DCGN) is proposed. DCGN is composed of two 
stages: The first is for frame-level feature representation with optimal frame selection 
strategy to select the best representative frame from the sequence employing CNN 
and Frame-Constrained Module (FCM). The second stage is for temporal modeling 
by assigning the attention weights over the whole video to select the linked frames 
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using Sequence-Constrained Module (SCM). In a plus, an optimizing module is also 
introduced for classification and metric loss. R1 accuracy results are 89.6%, 95.35%, 
78.51%, and 90.82% for MARS, DukeMTMC-VideoReID, iLIDS-VID, and PRID2011, 
respectively.

To remove the frame redundancy, while avoiding important information loss in 
representative frames, Jiang et  al. [4] performed feature fusion over multiple tempo-
ral attention on different semantic levels. The input tracklet is introduced to different 
semantic levels. For each semantic level, an intra-frame temporal attention network is 
defined. These networks preserve all salient information. Inter-frame temporal attention 
is also performed to remove redundancy between frames. Finally, the various tempo-
ral attentions of the salient levels are fused to get the final representation of the input 
tracklet. Results on MARS, PRID2011, and iLIDS-VID show 87.1%, 95.8%, and 87.7%, 
respectively.

Yang et al. [113] used the attention model to get a relation between the spatial–tem-
poral global and partial features. The global features get a relation map across frames 
while the partial features work on getting a relation between frames for the same spatial 
position. 89.1%, 97.2%, and 88.7% are the R1 accuracy results for MARS, DukeMTMC-
VideoReID, and ILIDS-VID, respectively.

Bayoumi et  al. [114] proposed a pyramid multi-part attention model (PMP) with 
multi-attention (MA) model. The PMP part aggregated features with three different 
details levels according to the person captured part. Each level summarized the person’s 
details and introduced them to the MA part. The MA part extracted the salient features 
for each level. Results on MARS, DukeMTMC-VideoReID, PRID2011, and iLIDS-VID 
have 90.6%, 97.2%, 98.9%, and 92.8%, respectively.

In Wang et al. work [115], information channels for each frame are identified and con-
cerning the whole sequence utilizing attention networks. This improves the spatiotem-
poral information representation and the correlation between frames. Even though the 
proposed frame weighting module not only weighted the individual frames but also cor-
responded to the sequence. Over MARS, DukeMTMC-VideoReID, and iLIDS-VID; the 
proposed work achieved 90.4%, 97.7%, and 90% R1 accuracy, respectively.

Tao et al. [116] presented an interference and pixel noise removal framework by using 
the attention mechanism. The framework mainly consisted of two basic modules: one 
for removing the interfering frames and the other for removing the noisy background 
that over-interfered the representative feature. An additional adaptive mask generated 
by the augmentation technique is introduced for further smoothing of the selected per-
son. Over Mars, the framework outperformed 92.5% Rank 1 accuracy.

Bai et al. [117] introduced the broad idea as an extension to the salient feature for each 
frame. The subsequent frames have the same information that exists in the last one but 
with additional information. This paper suppressed the replica information obtained by 
the attention module and then kept the additional one. 91.0% and 86.7% R1 accuracies 
are achieved. The attention-based approaches are summarized in Table 6.

3.2.2  Transformer‑based approaches

Transformers are initially presented for natural language processing applications as 
translation [118–120]. In recent years, transformers have been transplanted for different 
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computer vision applications such as image classification [113], object re-identification 
[121], and vehicle re-identification [122]. Wide different vision applications are summa-
rized in a comprehensive survey by Khan et al. [123]. Due to their great modeling capa-
bility, they are also introduced for person re-identification either for image-based ReID 
[124, 125] or for video-based ReID as in [126].

Sarker et  al. [127] surveyed the transformer-based ReID systems. They pointed to 
the challenges that face transformer-based ReID systems. Although it was published in 
2024, they mostly reviewed the image-based ReID and only one video ReID system [124] 
was reviewed through their survey.

Liu et al. [126] used transformers to exploit richer information representation for the 
raw video by proposing a trigeminal transformer. Three different representations are 
learned in spatial, temporal, and spatial–temporal views. For each view, local features 
are extracted. Then, three independent self-view transformers are introduced, and the 
resulting features are used as input to produce a robust relationship for each view. A 
cross-view transformer is then introduced to exploit the relationship through different 
views and aggregate them to get the final video representation. Experiments on iLIDS-
VID, PRID2011, and MARS show 91.3%, 96.4%, and 91.2% R1 accuracy, respectively.

Yang et  al. [128] introduced the transformer for linking the temporal information 
between frames by using Spatial Transformer Encode (STM) and Temporal Interac-
tion Module (TIM). STM worked on extracting the spatial features by using an encoder 
instead of CNN in their work, while TIM discovered the positive guided clues among 
frames. Further fine-grained module with transformer-based is introduced. Over Mars, 
89.2% R1 accuracy is achieved.

Not only the spatiotemporal features could be extracted using transformers; Tang 
et al. [129] proposed the attribute, identity, and attribute–identity proxy as representa-
tive features that are handled using attribute-aware Proxy Embedding Module, and iden-
tity-aware Proxy Embedding Module. Results on MARS, DukeMTMC-VideoReID, and 
iLIDS-VID show 91.8%, 97.4%, and 93.3% R1 accuracy results, respectively.

Transformers need a large dataset for training in order to avoid overfitting problems. 
To avoid overfitting with a limited dataset, two-stage spatiotemporal transformer with 
constrained attention is proposed by Zhang et  al. [130]. The constrained attention is 
applied to both spatial and temporal transformers and then an extra global attention 

Table 6 The attention‑based approaches (R1 accuracy in %)

The bold values indicate the best R1 accuracy results

Author Method MARS DukeMTMC‑
VideoReID

PRID2011 iLIDS‑VID

Chen et al. [88] Attention‑based 86.1 – 95.1 87.8

Shu et al. [108] 89.0 – – –

Wu et al. [110] 69.7 – 74.8 61.2

Fu et al. [106] 86.3 96.2 – –

Zhang et al. [111] 88.8 – 95.9 88.6

Chen et al. [112] 89.6 95.35 90.82 78.51

Jiang et al. [4] 87.1 – 95.8 87.7

Yang et al. [113] 89.1 97.2 – 88.7

Bayoumi et al. [114] 90.2 97.2 98.9 92.8
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module is added to improve the accuracy. Experiments on MARS, DukeMTMC-Video-
ReID, and iLIDS-VID show 88.7%, 97.6%, and 87.5% R1 accuracy, respectively.

Zang et al. [131] introduced the transformer as global and local scale feature extractor 
for the person tiny patches. Each person is divided into small patches then each patch is 
divided with vertical and horizontal direction to get tiny directive representation. Exper-
iments over Mars and iLIDS-VID show 90.22%, and 92.07% R1 accuracy results.

Self-attention is the key element in transformer, and He et  al. [132] used it to learn 
spatial and temporal features. The vanilla transformer encoder learns some features 
from each frame, while the vanilla transformer decoder learns the temporal features. 
The composition of the encoder and decoder forms the proposed dense attention model. 
They added two extra steps to outperform other’s previous work: positional input 
embedding, and fine-graining step. Positional input embedding investigates the input 
spatiotemporal features. While fine-graining step works on selecting informative frame 
features. Over MARS, DukeMTMC-VideoReID, and iLIDS-VID; the proposed work 
achieved 90.2%, 97.6%, and 92% R1 accuracy, respectively.

In Alsehaim and Breckon [133] introduced temporal clip shift and shuffle module with 
the global feature learning to get informative frame features. The frames are inducted 
into this module to form a clip from certain frames, and then they are shuffled. The next 
video patch part features determine the temporal informative part for each shuffled clip. 
Over MARS, PRID2011, and iLIDS-VID, the proposed work achieved 96.36%, 96.63%, 
and 94.67% R1 accuracy, respectively.

Yang et al. [134] used the CNN backbone as a frame-level feature extractor, and then, a 
mathematical model is proposed to map the continuous frame information into discrete 
space that is easily discriminated. Then, the sub-sequential filtering module passes only 
the representative information. Over MARS and DukeMTMC-VideoReID, the proposed 
work achieved 95.5% and 97.8% R1 accuracy, respectively.

The transformer-based approaches are summarized in Table 7.

3.2.3  Long short‑term memory (LSTM)‑based approaches

The LSTM is used widely in capturing the temporal information for the video sequence. 
Courtney et al. [135] used different LSTM networks to select the most appropriate spa-
tial temporal scale for a dataset.

Table 7 The transformer‑based approaches (R1 accuracy in %)

The bold values indicate the best R1 accuracy results

Author Method MARS DukeMTMC‑
VideoReID

PRID2011 iLIDS‑VID

Liu et al. [126] Transformers‑based 91.2 – 96.4 91.3

Yang et al. [128] 89.2 – – –

Tang et al. [129] 91.8 97.4 – 93.3

Zhang et al. [130] 88.7 97.6 – 87.5

Zang et al. [131] 90.22 – – 92.07

He et al. [132] 90.2 97.6 – 92

Alsehaim et al. [133] 96.36 96.63 94.67
Yang et al. in [134] 95.5 97.8 – –
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Recently, LSTM is used for cross-view gait information as in [136]. Wu et  al. [136] 
used the LSTM encoder–decoder framework to get the temporal information of the spa-
tial information extracted by CNN. Results over iLIDS-VID and PRID2011 datasets have 
41.6% and 69.0% R1 accuracies.

Li et al. [137] proposed a comprehensive model with both LSTM and residual atten-
tion components for cross-view gait recognition and measured the accuracy on CASIA 
gait recognition dataset.

Ouyang et al. [138] used the LSTM in capturing the temporal features. While the spa-
tial features are captured by Two Fusion Streams CNN (TFS-CNN) information. The 
fusion of TFS-CNN and LSTM produced representative features. Results on iLIDS-VID 
and PRID2011 have 64.8% and 78.3% R1 accuracy results.

Avola et  al. [139] used LSTM to generate person identifying pattern and two dense 
layers to generate meta-data for the skeleton gait and bone portion of the RGB video 
stream. Results over iLIDS-VID, PRID2011, and MARS show 73.4%, 82.7%, and 86.5% 
accuracy, respectively.

Song et  al. [140] proposed Extended Global Local Representation learning Network 
(E-GLRN). E-GLRN mainly depends on Bi-LSTM to extract the temporal local features 
between consecutive frames in addition to extracting the most informative three frames. 
Bi-LSTM consisted of forward and backward LSTMs. Bi-LSTM is preferred over the tra-
ditional LSTM that uses the previous, current, and future frames. The global and local 
features are fused together to get a representation for the person. Experiments over 
iLIDS-VID, PRID2011, and MARS show 81.3%, 91.6%, and 83.3% accuracy, respectively.

Bi-LSTM is also introduced by Dai et al. [141] to get both spatial and temporal features 
in two different network streams. The first stream with Bi-LSTM and temporal pool-
ing is used to extract the generic features, while the second stream is utilized to extract 
temporal features of the consecutive frames. Dai, Ju, et al. obtain 80.5% R1 accuracy over 
MARS, 87.8% over PRID2011, and 57.7% over iLIDS-VID.

Limcharoen [142] proposed the Bi-LSTM for the gait-based dataset and has a compet-
ing result on. The LSTM-based approaches are summarized in Table 8.

3.2.4  3D CNN‑based approaches

3D CNN is used as position encoding for the temporal information in videos. Bhuiyan 
et al. [143] introduced Spatial Temporal Cross-Attention (STCA), and 3D CNN is used 
to get the temporal information of the input tracklets, while the 2D CNN worked as 
a spatial appearance extractor. A cross-attention module is used further to obtain the 

Table 8 The LSTM‑based approaches (R1 accuracy in %)

The bold values indicate the best R1 accuracy results

Authors Method MARS DukeMTMC‑
VideoReID

PRID2011 iLIDS‑VID

Wu et al. [136] LSTM‑based approaches – – 69.0 41.6

Ouyang et al. [138] – – 78.3 64.8

Avola et al. [139] 86.5 – 82.7 73.4

Song et al. [140] 83.3 91.6 81.3
Dai et al. [141] 80.5 – – 57.7
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salient cues for the fused (2D and 3D) inputs. Comparable results for MARS and iLIDS-
VID with 90.3% and 88.3% R1 accuracy results are accomplished.

Gu et al. [47] introduced the 3D CNN as temporal encoder after the 2D appearance 
extraction CNN. They proposed an appearance-preserving 3D CNN (AP3D) module as 
a replacement of any 3D convolution network. AP3D shows outperforming R1 accuracy 
for MARs, and DukeMTMC-VideoReID: 90.7%, and 97.2%, respectively.

Xing et al. [144] used the 3D CNN to recognize the gait in cross-view.
Li et  al. [25] introduced compact and multi-scale 3D convolution (M3D) networks 

that obtain the temporal information. M3D was introduced in a form that it had one 
spatial kernel and n parallel temporal kernels with variable temporal range. M3D was 
comprised with residual attention layer (RAL) that refined the resulting temporal cues. 
M3D is followed by a 2D CNN to get the appearance spatial features. Results on MARs, 
iLIDS-VID, and PRID2011 show 84.39%, 74%, and 94.4% R1 accuracies.

4  Deep metric learning
Metric learning is an essential component in person re-identification. It aims to calcu-
late the similarity distance between the probe and the gallery extracted features. It is 
required to minimize the inter-classes variance for the same person, and intra-class vari-
ance between different persons. Thus different distance metric calculation is needed.

Zou et al. [145] was the first to review the metric learning algorithms. They catego-
rized them into metric and metric learning methods. The metric methods refer to the 
calculation of similarity distance between the probe and gallery extracted features [145]. 
Metric is calculated either from distance metric (Mahalanobis distance, or asymmet-
ric distance metric) or from similarity metric constructed through (hypergraphs, or 
matching functions), whereas the metric learning usually means constructing the metric 
matrix from loss objective function design. Figure 13 summarizes the idea.

Zou et al. [145] categorized the metric learning into classical and deep metric learning 
methods. Several classical metric learning techniques are widely used for video-based 
re-identification. Such methods as: Keep it Simple and Straight Metric (KISSME) learn-
ing algorithms [146]; Cross-view Quadratic Discriminant Analysis (XQDA) distance 
metric learning [146]; and Local Fisher Discrimination Analysis (LFDA) metric learn-
ing [147]. The deep metric learning techniques work on optimizing the loss function 
to achieve high ReID accuracy. Several loss functions are introduced on video-based 

Metric Learning Algorithms

Metric

Distance Metric

Mahalanobis 
distance

Asymmetric 
disctance

Similarity Metric

Hypergraphs

Matching 
functions

Metric Learning

Classical Metric 
Learning

Deep Metric 
Learning

Fig. 13 Metric learning algorithms according to Zou et al. [112] classification
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datasets as softmax loss [148], center loss, contrastive loss [149], triplet loss [150], and 
joint loss. The joint loss works on using more than one loss function in the ReID system. 
It is a way for improving the single loss results.

Fang et al. [151] modeled the video clips into sets and then employed the triplet loss 
between them. They used the set theory to calculate the distance between each video 
clip set rather than the ordinary distance learning which gets the distance between 
frames rather than a set of frames (clip). Furthermore, hard positive triplet loss is also 
presented for the proposed clip set. PRID2011, MARS, and iLIDS-VID have 96.6%, 
87.8%, and 88.0% R1 accuracy for the proposed set model.

Wang et al. [152] constructed an adaptive metric learning for maximizing the distance 
between different classes. The adaptive loss function is composed of similarity and regu-
larization terms. The PRID2011 dataset has 73.3% R1 accuracy for the proposed work 
rather than 15% for the KISSME method.

Yang et al. [153] used a CNN for frame-level features, and then, the temporal relations 
are modeled into a graph. Softmax cross-entropy loss and triplet loss are concatenated 
as a final loss function. R1 accuracy over MARS and DukeMTMC-Video ReID is 83.7% 
and 97.29%, respectively.

A combination of softmax loss function and center loss was introduced by Zhu et al. 
[154]. The combination of the two losses increased the discriminative capability between 
the intra- and inter-class variation for the proposed CNN architecture features. Over 
MARS, 59.8% R1 accuracy is achieved.

Modifications on the conventional triplet loss are introduced by Wojke et al. [155], and 
they proposed the cosine loss as new metric learning. The cosine loss is created based on 
softmax loss after simple re-parametrization. Experiments on MARS show 72.93% com-
pared to 71.31% for conventional triplet loss.

Hermans et  al. [156] also modified the classical triplet loss by introducing variants. 
These variants made the hard triplets less important. The hard margin is also replaced by 
a soft margin. Results on MARS show 81.21% R1 accuracy compared to 79.8% for triplet 
loss.

Meng et al. [157] discriminated between the person’s appearance in the camera view 
and cross-camera views using Deep Graph Metric Learning (DGML). Two graphs are 
constructed for spatial and temporal views. Then, the graphs are trained utilizing weak 
supervision. Results on WL-PRID2011, WL-ILIDs-VID, and WL-MARS are 72.09%, 
53.33%, and 68.18% R1 accuracy compared to 51%, 16%, and 21.56% for one-shot learn-
ing-based [143], respectively.

5  Deep learning approaches in video‑based person ReID
Labeling the unlabeled data is a major problem in deep learning. This section focuses on 
the published articles for enhancing the learning process for video-based person ReID. 
Five main approaches are reviewed: supervised learning, unsupervised learning, weakly 
supervised learning, reinforcement learning, and one-shot learning.

5.1  Supervised video‑based person ReID

There are two major obstacles for supervised video labeling: label estimation and feature 
representation. Despite the existence of labels, most estimation methods are introduced 
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for image-based ReID. On the other hand, feature representation is a non-trivial task 
due to frame misalignment, pose change, and illumination variation [21]. Moreover, the 
supervised labeling needs massive annotation [158]. Supervised video-based approaches 
are well served through the previous sections.

5.2  Unsupervised video‑based person ReID

Unsupervised learning can learn from the unlabeled data, without human guidance, 
through discovering features and grouping similar ones. Li et  al. [159] upgraded their 
work [160] by proposing an Unsupervised Tracklet Association Learning (UTAL) frame-
work. UTAL is a scalable system that works on the raw data and produces end-to-end 
labeling for each person without ID duplication or additional preprocessing as in [160]. 
UTAL starts with per-camera tracklets detection and labels them without applying any 
verification from the raw video data. Then, extract features from each tracklet. Cross-
camera tracklet association CCTA is then performed as a global representation for dif-
ferent views. Experiments over PRID2011, iLIDS-VID, and MARS show: 54.7%, 35.1%, 
and 49.9% R1 accuracy, respectively (Table 9).

Chen et al. [161] proposed an end-to-end Deep Association Learning (DAL) which is 
learned from the unlabeled tracklets in two stages: (1) learn the space–time consistency 
for each tracklet in a single camera where each tracklet is ranked according to the simi-
larity measure. (2) Learn the global consistency across cameras for different tracklets. 
Experiments over PRID2011, iLIDS-VID, and MARS show: 84.6%, 52.6%, and 46.8% R1 
accuracy, respectively.

Ye et  al. [162] constructed a Dynamic Graph Matching (DGM) that aimed to esti-
mate labels for each person across different cameras. For each camera, the unlabeled 
graph is constructed. Each person per frame represents a node. For multiple cameras, 
it is required to measure the similarity distance between graphs to find the most similar 
persons (positive samples) and give it an appropriate label. Iterative positive reweighting 
is performed to enhance the labeling process. Experiments over PRID2011, iLIDS-VID, 
and MARS show: 89.6%, 55.4%, and 54.3% score estimation accuracy, respectively.

Prasad et  al. [163] proposed Spatial Temporal Association Rule-based Deep Anno-
tation free Clustering (STAR-DAC) framework as pure unsupervised labeling frame-
work. STAR works on clustering the visually matched images and then fine-tuning the 

Table 9 The deep metric learning publications (R1 accuracy in %)

The bold values indicate the best R1 accuracy results

Author Method MARS DukeMTMC‑
VideoReID

PRID2011 iLIDS‑VID

Fang et al. [151] Metric learning 87.8 – 96.6 88.0
Wang et al. [152] – – 73.3 –

Yang et al. [153] 83.7 97.29 – –

Zhu et al. [154] 59.8 – – –

Wojke et al. [155] 72.93 – – –

Hermans et al. [156] 81.21 – – –

Meng et al. [157] WL‑MARA 
68.18

– WL‑PRID2011
72.09

WL‑IIDS‑Vid
53.33
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clustered one by using some rules. Over DukeMTMC-VideoReID and iLIDS-VID, 66.7% 
and 59.4% R1 accuracy is achieved, respectively.

On the other hand, Li et al. [164] worked on resolving the problem of assigning wrong 
pseudo-labels for the same person, which is due to large intra-variation for the com-
mon appearance. A multi-granularity pseudo-label prediction method was used at first 
to predict the label per person image, and then, those labels were used to train expert 
models that refine the predicted pseudo labels. 81.6%, and 87.3% R1 accuracy for MARS 
and DukeMTMC-Video ReID is achieved.

Zhang et al. [165] used the camera-aware method for unsupervised learning. CNN was 
used to extract the unlabeled dataset features, and then, pseudo-labels were assigned for 
each cluster. The online camera-aware weighting was calculated and updated for only 
the proxy camera. The selection of individual cameras is recommended in this work 
rather than all cameras due to complexity issues. This work was tested on Market1501 
dataset with 94.1% R1 accuracy.

Kim et al. [166] introduced a novel Disentanglement Switching and Aggregation Net-
work (DSANet). DSANet worked on separating the identity of different cameras regard-
ing the appearance and background similarities. DSANet used frame weight generation 
based on global pooling to predict the pseudo-labels for each discriminative frame. 
91.1% and 97.2% R1 accuracies for Mars and Duke are achieved.

Yang et  al. [167] focused on the person’s motion in groups in addition to the spati-
otemporal features over frames. An Accumulative Motion Context network (AMOC) 
is developed to get the motion flow from adjacent frames that mainly localize the split 
person slices in frame sequence first within the camera and then across multiple cam-
eras. The localized slices are trained to utilize an unsupervised manner due to the large 
number of parameters across cameras. Results on iLIDS-VID, MARS, and DukeMTMC-
VideoReID show 52.5%, 65.6%, and 76.8% R1 accuracies, respectively.

To enhance the performance of the unsupervised learning approach, Zeng et al. [168] 
tried to learn the association between the image and each camera and then update the 
anchor across cameras to find the positive pairs tracklets. Results on Mars show 73.2% 
R1 accuracy and 87.0% on DukeMTMC-VideoReID.

Lin et al. [169] highlighted the need for unsupervised learning for video-based person 
ReID. They surveyed the existing unsupervised approaches from four main challenging 
viewpoints and the proposed solution perspectives. The four main challenges are related 
to ground truth unavailability, pseudo-supervision for feature learning, camera invari-
ant-related problems, and dataset gap. Solutions for image-based and video-based ReID 
enhancement are stated.

Xie et  al. [170] worked on learning the video discriminating features from certain 
informative frames. They used sampling and reweighting strategies for trimming the 
noisy frames and enhancing the learning accuracy. Frames that include pose changes 
and partial occlusion, hard frames, are used to improve the clustering accuracy. Experi-
ments over PRID2011, DukeMTMC-VideoReID, and MARS show: 72%, 83%, and 62.7% 
R1 accuracy, respectively.

Lin et  al. [171] followed the iterative clustering and classification methodology for 
learning the cluster’s embedded features. Iterative training (soften similarity learning) 
is used for clustering hard quantization loss. The unsupervised network is initialized 
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by setting each image as a separate class, then each group of similar reliable images 
is grouped, and finally soften labels are assigned to each group and unreliable images 
are discarded. Experiments over DukeMTMC-VideoReID and MARS show: 76.4% and 
62.8% R1 accuracy, respectively.

Wang et al. [172] exploited the different camera network imaging for improving the R1 
results. The first step is to determine similar samples delivered by each camera. In the 
next step, cross-camera views are explored to find the matched pairs between cameras. 
Experiments over DukeMTMC-VideoReID and MARS show: 76.5% and 65.3% R1 accu-
racy, respectively.

Xie et  al. [173] proposed two sequential steps to improve the ReID ranking results. 
The first step is removing the noisy frames that include high occlusion using a dynamic 
threshold for each dataset. In the second step, hard frames that include pose changes are 
used to train the model. Experiments over DukeMTMC-VideoReID and MARS show: 
82.8% and 61.8% R1 accuracy, respectively.

5.3  Weakly supervised video‑based person ReID

Weakly supervised learning is recently used for image-based ReID [27, 174], localization 
[175], and for video-based ReID [176–178]. Weakly supervised learning means identify-
ing the person’s identity in the video regardless of the dedicated annotation in each video 
frame. Each set of probe video clips has several persons which is called a bag. The goal 
is to label the bag instead of labeling the individual frames. Therefore, it is considered a 
multi-instance multi-labeling learning problem [177]

Wang et al. [176] used the weakly supervised technique to label a person within a bag 
with his corresponding identity. For this purpose, they constructed two datasets: WL-
MARS and WL-DUKE, from the original MARS and DukeMTMC-VideoReID datasets, 
employing aggregating more than one person in one tracklet per video. They have built 
their model to label each person in the given video through: CNN and two sequential 
steps (coarse and fine-grained). The coarse-grained aimed at labeling identities from 
certain tracklets in the video. However, the fine-grained identified the person from the 
tracklet. The results over WL-Mars and WL-DUKE are 65.0% and 70.2% R-1 accuracy, 
respectively.

Meng et  al. [177] proposed a cross-view of multi-person/label in multiple camera 
views (CV-MIMl) such that they could find the person intra-bag (with the same bag) 
and cross other bags of different camera views utilizing clustering. The intra-bag is ini-
tially constructed to determine whether the same person has more than one image in the 
bag or not. The cross-view afterward clusters all person images across different camera 
views. Mask R-CNN [179] is implemented to generate the bounding box for each person 
with a confidence score. WL-DUKE, WL-MARS, WL-PRID2011, and WL-iLIDS-VID 
datasets are evaluated over the CV-MIML model and have 78.05%, 66.88%, 72%, and 
60% R1 accuracy, respectively.

Yu et al. [178] proposed a feature rectifier for the weakly supervised labels. First, the 
initial weakly supervised model assigned pseudo-labels for different identities, and 
then, the features were learned. Due to illumination and appearance changes in frame 
sequences, the feature learning is distorted. A further decision feature boundary has to 
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be rectified using the rectification function. The model achieved 72.1% R1 accuracy for 
the DukeMTMC-VideoReID dataset.

Liu et al. [179] removed noisy tracklets to improve the ReID results. After obtaining 
bags and assigning a label for each bag, noisy tracklets are removed. Afterward, learning 
the cross-bag tracklet association is used to differentiate between positive and negative 
pairs. Experiments over MARS and DukeMTMC-VideoReID have 88.1% and 90.2% R1 
accuracy results, respectively.

5.4  One‑shot learning for video‑based person ReID

According to the aforementioned reasons, Liu et  al. [180] used one-shot learning as 
an initial labeling model to build a labeling system. The initial model learned the dis-
criminative features that could generate the pseudo-labels for the unlabeled tracklets. 
Afterward, dynamic high-confidence samples are selected to update the initial model. 
Learning of one-shot pseudo-labeling is described in [181]. The experiments were held 
over DukeMTMC-VideoReID and MARS and attained 89.2% and 66.7% R1 accuracy, 
respectively.

5.5  Reinforcement learning for video‑based person ReID

Reinforcement learning (RL) is introduced in image-based ReID by Lan et  al. [103]. 
Then, Zhang et al. [182] introduced it for the video-based ReID. Zhang et al. [182] used 
the RL rewarding rules to instantly handle only two images at a time to decide whether 
they are similar or not. The results show 71.2%, 85.2%, and 60.2% R1 accuracy for MARS, 
PRID2011, and iLIDS-VID datasets, respectively.

Ouyang et al. [31] introduced a Self-Paced Learning (SPL) model [183] to select the 
appropriate frames. The SPL model is introduced by Kumar [183] to optimize the cur-
riculum learning process. SPL depends on learning from the simple examples to the 
hardest ones. Behind this concept, Ouyang et  al. [31] extracted the spatial temporal 
information employing a network composed of CNN and LSTM and then a SPL module 
was used further to update the network parameters to make it as mature and stable as 
possible. Results on MARS, PRID2011, and iLIDS-VID show 74.8%, 85.3%, and 70.5% R1 
accuracy, respectively.

Zhang et al. [184] noticed that there are similar repetitive and redundant frames on 
some datasets such as MARS. Those frames represent noisy information as similar 
scenes appear. For that purpose, reinforcement learning (RL) is introduced to find the 
most relevant frame. The agent is trained to find the appropriate one. The results show 
83%, 91.2%, and 68.4% R1 accuracy for MARS, PRID2011, and iLIDS-VID datasets, 
respectively.

6  Discussion
This section highlights some challenges that affect the video-based ReID perfor-
mance according to the reviewed publications. The discussion is presented from two 
viewpoints: The first focuses on the video-based person ReID systems architectures, 
strengths, and weakness points, whereas the second viewpoint addresses the perfor-
mance evaluation over the four benchmark datasets.
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6.1  General video‑based ReID system discussion

Since the video-based ReID system performance is affected by the extracted spatial and 
temporal feature types, both are investigated in this section.

Different approaches are proposed to provide representative spatial and temporal 
information for each tracklet. The spatial features have many forms as appearance-
based, attribute-based, and motion-based features. Some of these features are extracted 
through some steps before they are introduced to the ReID system. For example, attrib-
ute-based features require extra annotation to the dataset according to the used number 
of attributes and their type (stationary or dynamic). On the other hand, the pose features 
require estimating the person’s key points and the reference pose, while the gait-based 
features require getting the RGB image silhouettes before being merged into the ReID 
system. Although the appearance features are demonstrative, it is preferred to be merged 
with additional motion-relevant features such as optical flow or gait to obtain better 
results. Although the spatial features express representative information of frames, the 
temporal features act as a detailed connective link across individual frames. The tempo-
ral features represent redundant and repetitive information which has two side effects 
for video-based ReID implementation: (1) They add extra computational cost; (2) they 
provide huge information due to redundancy that may disturb the system. Thus, fur-
ther techniques are introduced to handle these two points. Redundancy reduction is 
performed by selecting the most salient and representative frames either by reweighting 
frames or by removing the noisy ones. Thus, concentrating only on selecting the salient 
frames reduces the computational cost.

On the other side, other researchers develop architectures to enhance the video-based 
ReID capability of acquiring the information details using attention models or trans-
formers. Both approaches show promising results over different datasets [134]. Uses dis-
cretizing the frames to select the most relevant frames then transforms are utilized to 
learn frames sequencing. As a result, outstanding state-of-the-art accuracy is obtained.

As shown previously, transformers have an informative representation of video-based 
ReID. It obtains the highest R1 accuracy results for the challenging MARS dataset. How-
ever, as transformers are initially presented for sequence representation in NLP and 
recently utilized in video sequencing in addition to its consuming computation cost, it 
was not widely addressed in video-based person ReID.

Besides, 3D CNN is used as a temporal feature aggregator. It acted as an encoder for 
the temporal information instead of just extracting the spatial features as in traditional 
2D CNN. Krichen et  al. [185] argued that 3D CNN outperforms CNN and LSTM for 
temporal encoding. In some cases, temporal features face unavoidable appearance mis-
alignment for consecutive frames. Thus, techniques such as 3D CNN and graph CNN 
are appropriate to reduce this misalignment.

6.2  Benchmark datasets evaluation over state‑of‑the‑art approaches

This subsection declares the performance of the various video-based person ReID archi-
tectures for each benchmark dataset. According to the deep learning-based categories: 
supervised-based learning including (LSTM, 3D CNN, attention models, and trans-
formers), unsupervised learning, weekly supervised learning, and one-shot learning 
approaches, a detailed comparison is held. For each deep learning category, the highest 
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reviewed R1 accuracy is reported. Then, detailed comparison between these categories is 
accomplished over four benchmark datasets regarding the highest R1. Despite of achiev-
ing higher results for supervised learning than other learning-based categories, the 
unsupervised learning approaches could not be neglected due to its learning capability 
from unlabeled dataset. The unsupervised learning is a suitable learning methodology 
for unlabeled datasets. Thus, it is important to highlight the gap between the supervised 
and unsupervised learning approaches by analyzing the reviewed publications over the 
four benchmark datasets.

6.2.1  MARS dataset

MARS is one of the most challenging datasets due to the variety of poses, occlusion, 
scale, lightning, background change, and bounding box misalignment. These chal-
lenges causes network inconsistency. Table 12 shows the highest R1 results per learn-
ing approach over MARS. For transformers, Table 7 shows that the highest R1 accuracy 
results achieved by Alsehaim et al. are 96.36% [133]. For attention, as shown in Table 6, 
the highest R1 accuracy result achieved by Bayoumi et  al. is 90.2% [114]. For LSTM, 
Table 8 shows the highest R1 accuracy results achieved by Avola et al. are 86.5% [139]. 
Using 3D CNN (by Gu et al. [47]) obtained the highest R1 accuracy that reached 90.7% 
[47]. On the other hand, with the massive work for improving the unsupervised learning 
approach results, Table 10 shows that Zeng et al. [168] outperform other next-best unsu-
pervised approaches and have 73.1%. The weakly supervised (summarized in Table 11) 
reached the highest R1 accuracy of 88.1%. Liu et al. [179] has 88.1%, while the one-shot 

Table 10 The unsupervised learning publications (R1 accuracy %)

The bold values indicate the best R1 accuracy results

Author Method MARS DukeMTMC‑
VideoReID

PRID2011 iLIDS‑VID

Li et al. [159] Unsupervised learning 49.9 – 54.7 35.1

Chen et al. [161] 46.8 – 84.6 52.6

Ye et al. [162] 54.3 – 89.6 55.4

Prasad et al. [163] – 66.7 – 59.4
Yang et al. [167] 65.6 76.8 – 52.5

Zeng et al. [168] 73.2 87.0 – –

Xie et al. [170] 62.7 83 72 –

Lin et al. [171] 62.8 76.4 – –

Wang et al. [172] 65.3 76.5 – –

Xie et al. [173] 61.8 82.8 – –

Table 11 The weakly supervised learning publications (R1 accuracy in %)

The bold values indicate the best R1 accuracy results

Author Method Wl‑MARS Wl‑DukeMTMC‑
VideoReID

PRID2011 iLIDS‑VID

Wang [163] Weakly supervised learning 65.0 70.2 – –

Meng et al. [177] 66.88 78.05 72 60
Yu et al. [165] – 72.1 – –

Liu et al. [179] 88.1 90.2 – –
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learning reported by Kim et  al. [21] has 66.7%. So, these results show that the trans-
former proposed by [134] has superiority over other deep-learning architectures for 
MARS dataset (Table 12). Figure 14 summarizes the results.

6.2.1.1 DukeMTMC-VideoReID dataset DukeMTMC-VideoReID is less addressed 
by research works compared to MARS. Table  13 shows the highest R1 results per 
learning approach over DukeMTMC-VideoReID. For transformers, Table 7 shows that 
the highest R1 accuracy result is achieved by Yang et al. (97.8%) [134]. For attention, as 
shown in Table 6, the highest R1 accuracy result is achieved by Yang et al. [113], and 
Bayoumi et al. (97.2%) [114]. Using 3D CNN (by Gu et al. [47]) obtained the highest R1 

Table 12 MARS state‑of‑the‑art R1 accuracy (%)

The bold value indicates the best R1 accuracy result

Year Author Deep learning approach R1 accuracy (%)

2023 Alsehaim et al. [133] Transformer 96.36
2022 Bayoumi et al. [114] Attention 90.2

2022 Zeng et al. [168] Unsupervised 73.1

2022 Gu et al. [47] 3D CNN 90.7

2023 Liu et al. [179] Weakly supervised 88.1

2023 Kim et al.[21] One shot 66.7

2020 Avola et al. [139] LSTM 86.5

Fig. 14 Different deep video‑based person ReID performance evaluation on MARS

Table 13 DukeMTMC‑VideoReID state of the art R1 accuracy (%)

The bold value indicates the best R1 accuracy result

Year Author Deep learning approach R1 accuracy (%)

2024 Yang et al. [134] Transformer 97.8
2020 Yang et al. [153] Unsupervised 97.29

2022 Yang et al. [113], Bayoumi et al. 
[114]

Attention 97.2

2020 Gu et al. [47] 3D CNN 97.2

2023 Liu et al. [179] Weakly supervised 90.2

2022 Liu et al. [168] One shot 89.2

– – LSTM –
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accuracy that reached 97.2%. On the other hand, Table 10 shows that the best unsuper-
vised learning result is achieved by Yang et al. [153] (97.29%), while weakly supervised 
learning (summarized in Table  11) reached the highest R1 accuracy result of 90.2% 
achieved by Liu et al. [179]. One-shot learning, reported by Kim et al. [21], has 89.2% 
accuracy. Thus, the superiority results show that the transformer in [134] has outper-
formed the results of DukeMTMC-VideoReID. Figure 15 summarizes the results.

6.2.1.2 PRID2011 dataset Table  14 summarizes the PRID2011 state-of-the-art 
video-based ReID systems. For transformers, Table  7 shows that PRID2011 is only 
tested by Liu et al. and has 96.4% [126]. For attention, as shown in Table 6, the highest 
R1 accuracy result achieved by Bayoumi et al. is 98.9%. For LSTM, Table 8 shows the 
highest R1 accuracy results achieved by Song et al. [140] are 91.6%. For 3D CNN, 3D 
CNN was only tested by Li et al. [25] and obtained 94.4%. On the other hand, Table 10 
shows the best unsupervised learning results achieved by Ye et al. [162] are 89.6, while 
weakly-supervised learning (summarized in Table  11) shows that PRID2011 is only 
tested by Meng et al. [177] and obtained 72%. The one-shot learning is not tested over 
PRID2011. So attention proposed in [114] has superiority results on PRID2011. Fig-
ure 16 shows the results.

Fig. 15 Different deep video‑based person ReID performance evaluations on DukeMTMC‑VideoReID

Table 14 PRID2011 state‑of‑the‑art R1 accuracy (%)

The bold value indicates the best R1 accuracy result

Year Author Deep learning approach R1 results 
accuracy 
(%)

2021 Liu et al. [126] Transformer 96.4

2022 Bayoumi et al. [114] Attention 98.9
2019 Ye et al. [162] Unsupervised 89.6

2020 Li et al. [25] 3D CNN 94.4

2019 Meng et al. [177] Weakly supervised 72

– – One shot –

2019 Song et al. [140] LSTM 91.6
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6.2.1.3 ILIDS-VID dataset ILIDS-VID has been tested in many publications. Table 15 
summarizes the state-of-the-art video-based ReID systems on iLIDS-VID. For trans-
formers, Table  7 shows that the highest R1 accuracy results achieved by Alsehaim, 
Aishah et al. are 94.67% [133]. For attention, as shown in Table 6 the highest R1 accu-
racy results achieved by Bayoumi et al. are 92.8%. For LSTM, Table 8 shows the high-
est R1 accuracy results achieved by Song et al. [140] are 81.3%. For 3D CNN, Bhuiyan 
et al. [143] obtained the highest R1 accuracy results by 88.3%. On the other hand, the 
best unsupervised learning results achieved by Prasad et al. [163] are 59.6%, as sum-
marized in Table 10, while weakly supervised results in Table 11 show that Meng et al. 
in [177] are the only one who tested iLIDS-VID and have 60%. The one-shot learning is 
not tested over iLIDS-VID. So transformer proposed in [133] has superior results for 
iLIDS-VID. Figure 17 shows the results of iLIDS-VID.

From the previous analysis, it is noticed that MARS needs massive work for unsu-
pervised, weakly supervised, and one-shot learning, while DukeMTMC-VideoReID 
needs more enhancements for weakly-supervised and one-shot learning. On the 
other hand, more improvements can be performed on PRID2011 using LSTM and 3D 
CNN, whereas more enhancements for LSTM, unsupervised and weakly supervised, 
can result in promising accuracies for iLIDS-VID. Since transformers have competing 

Fig. 16 Different deep video‑based person ReID performance evaluations on PRID2011

Table 15 ILIDs‑VID state‑of‑the‑art R1 accuracy (%)

The bold value indicates the best R1 accuracy result

Year Author Deep learning approach R1 results 
accuracy 
(%)

2023 Alsehaim et al. [133] Transformer 94.67
2022 Bayoumi et al. [114] Attention 92.8

2022 Prasad et al. [163] Unsupervised 59.4

2022 Bhuiyan et al. [143] 3D CNN 88.3

2019 Meng et al. [177] Weakly supervised 60

– – One shot –

2019 Song et al. [140] LSTM 81.3
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results on the four benchmark datasets, there is a need to be more served in video-
based person ReID to get better R1 results. Also, extra experiments are needed to 
reduce its computational cost.

Attention models have competing results also, so modifications over attention models 
are welcomed to have better results.

7  Challenges and future directions
Person ReID is still considered as an open challenging problem. As recommended by 
[186], it promotes the research toward other research areas such as player re-identifica-
tion, crowd management, criminal search, and civilian and military camouflage clothing 
ReID [186]. Video Person ReID has some open challenging research areas as:

7.1  Cloth changing problem

One of the most challenging problems is the long-term cloth-changing which means 
identifying a person despite appearance variations due to cloth-changing. To discuss 
this issue, it is required to record videos for days and months under the probability of 
a person’s clothes changing under inconsistency issue as discussed in [187, 188]. Thus, 
constructing a new realistic dataset as Real28 and Long-Term Cloth Changing (LTCC) 
datasets in [187, 188], respectively, is presented. Another challenging problem is uni-
form discrimination, i.e., extracting a person of interest having a dress code similar to 
the other persons. Similar appearance features for all persons are presented. These two 
problems require more investigation to get reasonable retrieval results.

7.2  Uniform discrimination

Another challenging problem is uniform discrimination, i.e., extracting a person of inter-
est through those having similar dress code. Similar appearance features for all persons 
are presented. This problem has been addressed in schools, factories, and companies 
with the same appearance. Extra experiments are needed in this direction and results 
can be evaluated on FGPR dataset [11].

Fig. 17 Different deep video‑based person ReID performance evaluation on iLIDS‑VID
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7.3  Existing systems performance improvements

As mentioned in the discussion section, there are many improvements for each approach 
group that are recommended to achieve better results. In addition, it is recommended to 
examine using the 3D modeling for person representation and apply different temporal 
feature backbones to the ReID systems over the four benchmark datasets. The results 
obtained in [82] show promising results.

In the era of augmented data, generative adversarial networks, GAN [185] (used for 
generating datasets such as [189] and [190]), it is recommended to build more generic 
ReID systems that achieve high accuracy on videos generated by those models. GAN is 
also presented to help in ReID model training as Jot-GAN [191]. A recommendation to 
apply such techniques is welcomed for video-based approaches.

For transformer computational cost reduction, Chen et al. [192] succeeded to reduce 
the computational cost by introducing ResNet-50 as a former head part to the trans-
former but it is applied for image-based ReID. Also, Wang et al. [193] and Zhou et al. 
[194] used the transformer of the image-based ReID targeting finer representation. 
Accordingly, these approaches are highly recommended for video-based ReID.

7.4  Datasets resources and models

There is a need to increase the number of publicly available video datasets and sup-
port annotation. On the other hand, it is essential to the build models that are more 
generic and covers different situations such as open and closed environment situations 
with an adequate number of high-resolution cameras for a large number of persons. 
As a result, a scalable video ReID that could process these large datasets is mandatory. 
A hybrid architecture of transformers, attention, and 3D CNN would help in building 
these models.

8  Conclusion
Video-based person re-identification plays a key role in video surveillance applications, 
tracking, finding lost people, and criminal investigation. Although deep learning tech-
niques have been involved in building video-based person ReID systems, they are less 
served compared to image-based techniques. Thus, up to our knowledge, this is the first 
survey that focuses only on deep video-based person ReID according to ReID system 
implementation workflow. The survey reviews the video-based person ReID datasets 
(benchmark and special purpose), deep feature learning (spatial and temporal), deep 
metric learning, and the deep-learning backbone architecture approaches (supervised, 
unsupervised, weakly supervised, and one-shot learning). The proposed survey pro-
vides recommendations to improve the outcomes depending on the various strengths 
found in each technique. Over four benchmark datasets, a comparative analysis for the 
state-of-the-art approaches is performed. In addition, some future research directions 
are suggested according to the analyzed approaches performance. The analysis shows 
that more developments are needed for unsupervised, weakly supervised, and one-shot, 
deep learning approaches to achieve higher results. And transformers achieved superior 
results on the four benchmark datasets.
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