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Abstract 

Biometric systems are essential tools in modern society where most of our personal 
information lives in digital form. Although there is a significant variety of biometrics, 
electroencephalogram (EEG) signals are a useful technique to guarantee that the per‑
son is alive, they are universal, and not falsifiable. Nevertheless, EEG processing needs 
to address some challenges to become a viable technique to build production‑ready 
biometric systems. These challenges include the adequate selection of features 
and channels that maximize the quality of the results and optimize resources. This 
work provides an analysis of which are the most important features and channels 
for the correct operation of a biometric system. The experimental analysis worked 
with two datasets and evaluated 19 features belonging to three groups, wavelet‑based, 
spectral, and complexity. Five classifiers were trained: multilayer perceptron, AdaBoost, 
random forest, support vector machine, and K‑nearest neighbors. The results found 
that the best feature for developing a biometric system is the standard deviation 
extracted from the coefficients of a three‑level discrete wavelet transform. Addition‑
ally, the experimental results with the two datasets showed that the proposed method 
for channel selection can reduce the necessary number of channels while maintaining 
its performance. Our results, from one of the datasets, showed a reduction of 21 chan‑
nels (from 32 to 11) and indicated that the best channels to develop biometric systems 
seem to be those located on the central area of the scalp.

Keywords: Electroencephalograms, Biometric System, Features, Channels, Discrete‑
Wavelet

1 Introduction
Most modern authentication systems rely on identification numbers (PIN), image-based 
techniques such as fingerprints, facial patterns, iris patterns, and hand geometry [1]. 
However, these techniques could be easily tricked or simulated, or in the case of PINs, 
they are also prone to be forgotten or stolen. Electroencephalographic signals have been 
proposed as an alternative technique for biometric systems since they are universal, 
meaning every human being produces EEG signals. Moreover, these signals can show 
information about cognitive processes and subject-specific genetics. The disadvantages 

†Dustin Carrión‑Ojeda, Paola 
Martínez‑Arias, Rigoberto 
Fonseca‑Delgado, Israel Pineda 
and Héctor Mejía‑Vallejo these 
authors contributed equally to 
this work.

*Correspondence:   
dustin.
carrion@visinf.tu‑darmstadt.de; 
rfonseca@yachaytech.edu.ec; 
ipineda@usfq.edu.ec

1 Department of Computer 
Science, Technical University 
of Darmstadt, Darmstadt 64289, 
Germany
2 hessian.AI, Darmstadt 64293, 
Germany
3 Vicomtech, San 
Sebastián 20009, Spain
4 School of Mathematical 
and Computational Sciences, 
Yachay Tech University, 
Urcuquí 100115, Imbabura, 
Ecuador
5 Universidad San Francisco de 
Quito, 170901 Pichincha, Ecuador
6 Universidad Autónoma de 
Madrid, Ciudad Universitaria 
de Cantoblanco, Madrid 28049, 
Spain

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-024-01155-x&domain=pdf
http://orcid.org/0000-0002-8890-3911


Page 2 of 24Carrión‑Ojeda et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:58 

of this kind of biometrics are related to the noise associated with brain signals, mak-
ing them more complex and challenging than traditional biometric traits. Nonetheless, 
some features extracted from the EEGs can help process and classify them to differenti-
ate among subjects.

Another concern when working with electroencephalograms for biometric systems 
development is how to record and use them with a functional, portable, and low-cost 
implementation. For this reason, biometric systems need a selection of channels to 
extract the most essential and helpful information to classify subjects. It is beneficial to 
avoid a full set of 14 or 32 electrodes, which are the typical number of channels found in 
commercial EEG headsets. The channel selection process could result in constructing 
biometric systems based on EEG signals with fewer channels to decrease the computa-
tional and monetary cost while keeping high performance and portability.

The proposed methodology to find the best features and channels include two parts. 
The first part focuses on identifying the best feature or set of features to extract from the 
EEG signals that effectively distinguish one person from another. This evaluation com-
pares the subject classification results using five machine learning algorithms for 19 dif-
ferent EEG extracted features. The second part of this study concentrates on selecting 
the most appropriate number of EEG channels to identify between subjects and analyze 
their impact on the performance of the system.

The main contribution of this work is a methodology to select the best feature or fea-
tures and the optimal number of EEG channels. In this work, the best feature was the 
standard deviation extracted from the coefficients of a three-level discrete wavelet trans-
form, and the optimal number of channels was different for each dataset, obtaining a 
reduction of 21 channels in the best scenario. Additionally, another interesting contri-
bution is the collection of characteristics useful for EEG-based biometric systems. The 
article is organized as follows. Section 2 summarizes the related work on the feature and 
channel selection. Section 3 describes the datasets used in this work and the proposed 
methodology. Section 4 presents the experimental results and their corresponding anal-
ysis. Finally, Sect. 6 contains the conclusions and future work.

2  Related works
The ability of the features to capture the most distinctive characteristics of the subjects 
is critical to achieving high performance in EEG-based applications [2]. Due to the wide 
range of applications based on EEGs, researchers have focused on finding a suitable 
method for feature selection during recent years. The most common methods determine 
the best feature and include a channel selection approach [3]. However, most feature 
or channel selection methods target specific activity classification where the goal is to 
differentiate between activities rather than people. For this reason, the results of those 
methods cannot be directly applied in the development of biometrics since the neuro-
logical stimulus used for recording the signals does not matter from a security point of 
view but rather the precision to distinguish one person from another.

Schroder et al. [4] proposed an automatic feature selection combining a genetic algo-
rithm with a Support Vector Machine (SVM). They considered each channel as a feature, 
so their method aimed to find the best channels for developing brain–computer Inter-
faces (BCIs). The authors concluded that the optimal set of features for developing BCI 
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is strongly dependent on the subjects and the experimental paradigm. In the develop-
ment of biometric systems, a requirement is to establish a method independent of the 
involved people.

Even though the channels can be used as features, most EEG-based applications com-
pute some features capable of representing the channels’ most relevant information 
while reducing the dataset dimension. For this reason, [5] first evaluated a set of features 
including the autoregression (AR) model, the power spectrum of the time domain (TPS), 
the power spectrum of the frequency-domain (FPS), and phase-locking value (PLV). 
These features were extracted from all the available channels and then evaluated with 
SVM. After the feature evaluation, they employed a support vector machine recursive 
feature elimination (SVM-RFE) to select the most discriminative channels, but only for 
the AR model because it showed the best performance in the previous step. Despite the 
selection of channels, the authors proposed using 32 EEG channels. Considering that 
using 32 channels still makes it hard to develop portable biometric systems, more fea-
tures need to be evaluated to further reduce this number.

Another approach for selecting the best features and channels is finding a measure-
ment representing intra-subject and inter-subject variability. In this kind of meas-
urement, the best features and channels have minimum intra-subject variability and 
maximum inter-subject variability. Following this approach, Kang, Lee, and Kim [1, 6] 
provided two analyses of features and channels for EEG-biometrics. In the first analysis, 
they evaluated power spectral density (PSD) features and Lyapunov exponents with a 
criteria index (CI) that consisted of three types of variances. Using this index, they found 
that the maximum Lyapunov exponent had the maximum CI value among all types of 
EEG features. Furthermore, two (T4, T6) out of sixteen channels had the highest CI val-
ues overall brain areas [1].

A second study [6] evaluates the performance of seven features (alpha/theta, alpha/
beta, theta/beta power ratio, sample entropy, permutation entropy, entropy, and median 
values of distribution) extracted for each of the sixteen EEG channels. As a result, 112 
features composed their initial set of features. Then, they used mutual information to 
select the best ones. After their analysis, the set of features was reduced to nine, and the 
user identification results were higher than using PCA reduction [6]. Regardless of the 
proposed measurements’ efficiency, both works’ main limitations were the dataset’s size 
because it only contained the information of seven subjects with recordings of sixteen 
channels.

A different approach for features and channels selection for a subject identification is 
presented by [7]. The authors first performed a channel selection guided by the assump-
tion that electrooculographic (EOG) interference in the resting-state with eyes open and 
the bursting alpha activity in the resting-state with eyes closed could lead to low authen-
tication. Using the spectral power, they investigated the effect of these two factors and 
finally reduced the number of channels from 56 to 34. They analyzed, using the selected 
channels, ten single-channel features (seven spectral and three nonlinear) and ten mul-
tichannel features by conducting network analysis based on phase synchronization. The 
authors were able to select the best feature for the dataset in the study.

Despite the existence of various approaches for selecting optimal features and chan-
nels in previous research, there is a notable absence of studies that confirm their findings 
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across multiple datasets obtained from diverse EEG headsets. Furthermore, there is a 
deficiency in comparative analysis involving classification algorithms to ascertain the 
most effective feature-channel pairing. Additionally, features derived from wavelet 
transform have been demonstrated to be effective for user identification [8–10]. Con-
sequently, incorporating wavelet-based features into the initial feature set could signifi-
cantly enhance the comprehension of EEG-based biometric systems.

3  Methodology
The proposed method is divided into four main steps: data acquisition, feature extrac-
tion, feature selection, and channel selection. The following subsections discuss the 
details of each step. Moreover, it is important to mention that this study extends the 
EEG-based applications using Python (EBAPy) framework [11]. Due to the flexibility of 
this framework, this study added functionalities to EBAPy [12].

3.1  Data acquisition

This work employed two datasets to train, test, and experiment with our methodology. 
The first dataset is the open-access dataset “DEAP” [13]. It has recordings of 32 healthy 
participants (50% female), aged between 19 and 37 (mean age is 27). Each recording has 
32 EEG channels, 12 peripheral channels, three unused channels, and one status chan-
nel. All subjects recorded 40 trials, and each trial has a duration of 63 seconds (3 seconds 
of baseline and 60 seconds of trial). In each trial, the participants were presented with 
a YouTube video aimed at evoking particular sentiments. After each video, the subjects 
scored their level of valence, arousal, dominance, and liking.

Even though the DEAP dataset aims to analyze human affective states, it can be cor-
rectly used for biometrics development. It is only needed to know which subject each 
EEG corresponds to, regardless of the task performed at recording time. Furthermore, 
using a dataset with different affective states is advantageous because each subject’s 
EEGs can vary significantly between the trials providing a more realistic environment.

DEAP dataset has two versions, one with the raw signals and another one with already 
preprocessed signals. This work uses the preprocessed version of the DEAP dataset. In 
this version, the EEG signals were downsampled from 512 Hz to 128 Hz, passed through 
a band-pass frequency filter from 4-45 Hz, and through a common average reference 
filter to improve the signal-to-noise ratio. Additionally, the electrooculographic (EOG) 
artifacts were removed using a blind source separating technique.

The second dataset is the open-access “BIOMEX-DB” [14]. The main reason for using 
another dataset was to increase the reliability of this study. In contrast to DEAP, this 
dataset aims to develop multimodal biometric systems by providing EEG, audio, and 
video recordings. However, our research only analyzes the EEGs.

The information of BIOMEX-DB corresponds to 51 healthy participants (49% female), 
aged between 16 and 61 (mean age 29). Each participant registered 135 trials of 2.5 sec-
onds, where each trial was the pronunciation of a number between 1 and 10. Each EEG 
was recorded with a frequency of 2048 Hz and 14 channels. However, the sampling fre-
quency was downsampled to 128 Hz.
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As with DEAP, the original labels of BIOMEX-DB were replaced by the subjects of 
each EEG. Based on the results of previous works [15, 16], this research uses 1.75 sec-
onds of recording taken randomly from each trial.

3.2  Feature extraction

This study evaluates 19 features belonging to three categories: spectral, complexity, and 
wavelet-based. Each feature is detailed below.

3.2.1  Spectral features

Dauwels et al. [17] used the spectral features to quantify the changes in the signal given 
by its power. When working with spectral features, it is necessary to work with the Fou-
rier transform of the signal.

Power Spectral Density (PSD) The PSD shows the strength of the energy variation 
of a signal as a function of the frequency. It is defined as the discrete-time Fourier 
transform of the covariance sequence [18]. Nevertheless, in this work, the PSD was 
obtained using the “Periodogram,” which is a MATLAB function. The periodogram 
is a nonparametric estimate of the PSD, and it is defined as the Fourier transform of 
the biased estimate of the autocorrelation sequence [19]. To calculate this, we use the 
frequency sample of the signals, which is 128Hz.
Total Average Power (TAP) Power is defined as work per time, meaning the amount 
of energy transferred per unit of time. The following formula is used to calculate the 
total average power. Considering a signal x:

Median Frequency (MFreq) The MFreq is defined as the frequency in which the total 
spectral power is halved [20]. It is expressed by the following equation:

where Pj is the EEG power spectrum at the frequency bin j, MDF is the frequency 
value in which the power spectrum is divided in two parts with equal integrated 
power [21], and M is the length of the frequency bin [22].
Relative Power (RelPow) This method consists of the computation of the spectral 
power in each frequency band of the EEG, and then, it is necessary to compute the 
percentage of the total power that each band has. For computing the RelPow, this 
work used four frequency bands: δ (0-4 Hz), θ (4-8 Hz), α (8-12 Hz), and β (12-30 
Hz).

3.2.2  Complexity features

This category of features quantifies the entropy and complexity of a system. In the 
context of information theory, entropy is defined as the measure of the uncertainty 

(1)TAP =
|x|2

length(x)
.

(2)
MDF
∑

j=1

Pj =
1

2

M
∑

j=1

Pj ,
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associated with a random variable [17]. The greater the entropy, the more complex 
the system is

Tsallis Entropy (TsEn) The TsEn is the generalization of the Boltzmann-Gibbs 
entropy [23] and it is determined by quantizing the amplitude of the EEG. As 
mentioned in [24], given a discrete set of probabilities {pi} with the condition that 
∑

pi = 1 , the TsEn is defined as:

where q ∈ R , W ∈ N is the total number of possible configurations. and k is a con-
ventional positive constant. For this work we used k = 1 and q = 3 , as recommended 
in several studies for determining changes in a signal [25].
Approximate Entropy (ApEn) It measures the logarithmic likelihood that runs 
of patterns that are close (within a window denominated by r) for m contiguous 
observations on subsequent incremental comparisons. In this work, we used the 
values of r = 0.01 and m = 1 to determine the amplitude variation in the signal 
[26]. To compute the ApEn, the following steps should be followed [27]: 

1. Form a time-series data {u(n)} = u(1),u(2), ...,u(N ) with N data values equally 
spaced in time.

2. Fix m ∈ Z and r ∈ R
+ where m is the length of the run data, and r the filtering 

level, or tolerance window.
3. Form a sequence of vectors x(1), x(2), ..., x(N −m+ 1) ∈ R

m , a m-dimen-
sional space defined by x(i) = [u(i),u(i + 1), ...,u(i +m− 1)] where 
i ∈ {1, ...,N −m+ 1}.

4. Define d[x(i), x(j)] which is the distance between x(i) and x(j), as the maximum 
absolute difference between their respective scalar components 

5. For a given x(i), count the number of j ( j ∈ {1, ...,N −m+ 1} ) so that 
d[x(i), x(j)] ≤ r denoted as Nm(i) . Then: 

 for i ∈ {1, ...,N −m+ 1}.
6. Find the natural logarithm of each Cm

r (i) and average it over i

7. Increase the dimension of m to m+ 1 and then find Cm+1
r (i) and �m+1(r)

8. Define approximate entropy as: 

(3)Sq(pi) =
k

q − 1

(

1−

W
∑

i=1

p
q
i

)

,

(4)d[x(i), x(j)] = max
k=1,2,...,m

[u(i + k − 1)− u(j + k − 1)].

(5)Cm
r =

Nm(i)

N −m+ 1
,

(6)�m(r) =
1

N −m+ 1

N−m+1
∑

i=1

lnCm
r (i).
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Sample Entropy (SampEn) The SampEn is a refinement of the ApEn designed to 
have a smaller bias since it does not include self-similar patterns [28]. Assuming a 
time-series sequence of length N ,u(i) = {u1, . . . ,uN } , N −m+ 1 vectors xm(i) 
with i ∈ {1, . . . ,N −m+ 1} where xm(i) = {u(i + k) : 0 ≤ k ≤ m− 1} are formed. 
Then, the distance function d[xm(i), xm(k)] is defined to be the maximum difference 
between the components of the vectors:

Finally, the SampEn is defined as:

where A is the number of template vector pairs having d[xm+1(i), xm+1(k)] < r , and 
B is the number of template vector pairs having d[xm(i), xm(k)] < r [28]. The result 
is always greater than zero, and a small value is an indicator of less noise and more 
self-similarity. For this feature, we also used the values of r = 0.01 and m = 1.
Lempel-Ziv Complexity (LZC) This method counts the number of different patterns 
in a signal of length n. The fewer such patterns, the better a signal may be com-
pressed. The compression rate is a measure of the regularity of a signal [29]. 
 The original signal must be coarse-grained and transformed into a symbol 
sequence for simplifying the computation. To generate a two-state sequence, signal 
( R = {r(1), r(2), . . . , r(n)} ), the following equation is applied:

where n is the length of the signal x(n) and Th is the threshold, which normally is the 
mean value of the sequence.
  Using the binary sequence R, the vector c(n), which is a counter of the different 
patterns, for a binary symbol sequence, is calculated following the below process: 

1. Let S and Q denote two strings. SQ is the concatenation of S and Q. SQπ is the 
concatenated string with the last character deleted, and v(SQπ) is the vocabu-
lary of all the different substrings of SQπ . For example, consider c(n) = 1 , S = S1 
and Q = S2 , so SQπ = S1.

2. If Q ∈ v(SQπ) then Q is a substring of SQπ.
 S = S1S2S3 . . . Sr

 Q = Sr+1

 SQπ = S1S2...Sr

3. Q = Sr+1Sr+2 . . . Sr+i is not a substring of SQπ = S1S2S3 · · · Sr+i−1 , so c(n) 
increases by one.

4. c(n) is updated because a new pattern was found, then S and Q are also updated: 
S = S1S2 . . . Sr+i and Q = Sr+i+1 As a result, c(n) is the number of different sub-
strings contained in R, meaning that c(n) represent the different patterns in a 

(7)ApEn = �m(r)−�m+1(r).

(8)d[xm(i), xm(k)] = max{|u(i + j)− u(k + j)| : 0 ≤ j ≤ m}.

(9)SampEn = − log
A

B
,

r(i) =

{

0, if x(i) < Th

1, if x(i) ≥ Th
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sequence. Also, c(n) may vary with length, therefore, it should be normalized. 
The upper bound of c(n) is:

where n is the length of the sequence, α the number of different symbols, and ǫn 
is a small quantity. Additionally, ǫ → 0 when n → ∞.

Finally, c(n) can be normalized as:

 Higuchi Fractal Dimension (HFD) According to Giannakakis et  al. (2014), the 
fractal dimension is a nonlinear measure on the time domain that is used to char-
acterize the complexity of a time series. It is helpful to quantify the complexity and 
self-similarity from a signal [30]. The degree of complexity of the sequence increases 
as the fractal dimension increases. The following procedure was used to obtain this 
measure. Given a one-dimensional time-series X = x(1), x(2), ..., x(N ) , form k new 
time-series Xm

k  defined by:

where k and m are both integers, and int(∗) makes reference to the integer part of ‘ ∗ ’. 
k represents the discrete time interval between points, and m = 1, 2, ..., k is a repre-
sentation of the initial time value [30]. In this sense, taking as an example kmax = 3 
and N = 100:

For each of the time series constructed by the previous equation, the length is com-
puted in the following way:

with N as the length of the original time-series X, and N−1

int(N−m
k

)k
 is a normalization 

factor.

(10)c(n) <
n

(1− ǫn) logα(n)
,

(11)lim
n→∞

c(n) = b(n) =
n

logα(n)
.

(12)C(n) =
c(n)

b(n)
.

(13)Xm
k =

{

x(m), x(m+ k), x(m+ 2k), ..., x

(

m+ int

(

N −m

k

)

× k

)}

,

X3
1 : X(1),X(4),X(7), . . . ,X(94),X(97),X(100)

X3
2 : X(2),X(5), . . . ,X(95),X(98)

X3
3 : X(3),X(6), . . . ,X(96),X(99)

(14)

L(m, k) =
1

k







int(N−m
k

)
�

i=1

�

�X[m+ ik]− X[m+ (i − 1)× K ]
�

�






×

N − 1

int(N−m
k

)k
,



Page 9 of 24Carrión‑Ojeda et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:58  

Those steps are repeated kmax times for each k = 1, 2, . . . , kmax The next step 
in the procedure is to plot L(k) against 1/k on a double logarithmic scale, with 
k = 1, 2, . . . , kmax . The result should be the data falling on a straight line that has 
a slope equal to the fractal dimension of the time-series X. Therefore, Higu-
chi fractal dimension (HFD) is defined as the slope of the line that fits the pairs 
{ln(L(k)), ln(1/k)} using a least-square method to determine it. The value of kmax is 
chosen at the point in which the fractal dimension is considered a saturation point. A 
value of kmax = 60 was chosed for this study.

3.2.3  Wavelet‑based features

This study analyzes the ten features proposed by [31]. All features are calculated 
after applying a discrete wavelet transform (DWT). Previous experimental results 
by Carrion-Ojeda et  al. [15, 16] showed that a three-level DWT with Daubechies-4 
as mother wavelet provides efficient features. For this reason, this study uses those 
parameters for the DWT. All the detail coefficients (D) and the last approximation 
coefficient (A) were analyzed to compute the features. Below are the equations for all 
the extracted features and in all of them

and N is the length of the coefficients.

Maximum per Wavelet Coefficient (max):

Minimum per Wavelet Coefficient (min):

Mean per Wavelet Coefficient:

Standard Deviation per Wavelet Coefficient:

Variance per Wavelet Coefficient:

(15)L(k) =
1

k
×

k
∑

m=1

L(m, k).

i ∈

{

{1, 2, 3}, if C = D
{3}, if C = A

,

(16)max(Ci)

(17)min(Ci)

(18)µCi =
1

N

N
∑

j=1

Cij

(19)σCi =

√

√

√

√

1

N − 1

N
∑

j=1

(Cij − µCi)
2



Page 10 of 24Carrión‑Ojeda et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:58 

Median per Wavelet Coefficient: Median of each coefficient.
Skewness per Wavelet Coefficient:

Energy per Wavelet Coefficient:

Relative Wavelet Energy: For computing the RWE, first the total energy is need:

Then, the RWE is defined as follows:

Entropy per Wavelet Coefficient:

3.3  Feature selection

An individual evaluation was carried out for each of the features detailed in Section 3.2 
to select the best one. The entire process followed to evaluate and select the best feature 
is detailed below.

3.3.1  Hyperparameter optimization

This study assessed five classifiers: multilayer perceptron (MLP), AdaBoost (AB), ran-
dom forest (RF), support vector machine (SVM), and k-nearest neighbors (kNN). For 
optimizing the hyperparameters of all classifiers, a greedy search optimization was 
applied. This algorithm uses a hyperparameter set and analyzes all possible combina-
tions generated using the parameters contained in that set [32]. The optimization was 
applied individually for each feature in each dataset. Additionally, tenfold cross-valida-
tion was used to increase the reliability of the selection of hyperparameters. The set of 
parameters for each classifier was the same throughout the optimization process and is 
shown in Table 1.

(20)VCi = σ 2
Ci

(21)SkewnessCi =
3× (µCi −medianCi)

σCi

(22)ECi =

N
∑

j=1

|Cij |
2

(23)ET =

(

3
∑

i=1

EDi

)

+ EA3

(24)RWECi =
ECi

ET

(25)ENCi =

N
∑

j=1

C2
ij
log2(C

2
ij
)
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For each dataset, 20% of the available data was extracted to perform hyperparameter 
optimization. These data were divided into a training and testing set to carry out the 
greedy search optimization. This division was performed in a balanced way to avoid pos-
sible bias when selecting the best parameters. For this reason, 75% of the trials of each 
subject were randomly selected for the training set, and the remaining 25% made up the 
test set. For avoiding favoring any classifier, all of them were optimized using the same 
folds. Furthermore, it is worth mentioning that the data used at this stage was not reused 
at any later stage.

3.3.2  Classification

After obtaining the best combination of parameters for each classifier, these were inde-
pendently trained for each dataset and feature. As mentioned in Sect. 3.1, this study fol-
lowed a multi-class classification approach where each subject corresponds to a class, 
resulting in 32 classification categories for DEAP and 51 classification categories for 
BIOMEX-DB. For training the classifiers, a closed set strategy was followed, meaning 
that each classification category was presented during training.

Table 1 Set of values for hyperparameter optimization

Id Hyperparameter Set of values

Multilayer Perceptron (MLP)

 1 Net specification (neurons per layer) (106); (106,106); (106,106,106); 
(84,84); (127,127)

 2 Learning rate 1e‑3; 5e‑3; 0.01; 0.05; 0.1

 3 Batch normalization True; False

 4 Dropout True; False

 5 Dropout percentage 10; 20; 30; 40; 50

 6 L2 regularization True; False

 7 L2 regularization value 0.01; 0.05; 0.1; 0.5

 8 Epochs 10; 100; 500; 1000

AdaBoost (AB)

 1 Weak classifier SVM; RF

 2 Number of weak classifiers 5; 10; 50; 100; 500; 800

 3 Learning rate 0.1; 0.5; 1; 5

 4 Boosting algorithm SAMME; SAMME.R

Random Forest (RF)

 1 Number of estimators 1; 10; 50; 100; 200; 500; 750; 1000

 2 Min. number of samples required to split 
an internal node

2; 5; 10; 50; 100

 3 Criterion Gini; Entropy

Support Vector Machine (SVM)

 1 Penalty parameter 0.5; 1; 10; 50; 100; 200; 300

 2 Kernel linear; rbf; sigmoid

 3 Tolerance 1e‑7; 1e‑6; 1e‑5; 1e‑3; 0.1; 1

 4 Kernel coefficient scale; auto

k‑Nearest Neighbors (kNN)

 1 Number of neighbors 1; 5; 10; 20; 50; 100

 2 Distance metric Euclidean; Manhattan

 3 Leaf size 5; 10; 30; 50; 100
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3.3.3  Performance evaluation and best feature selection

As this study followed a multi-class classification approach, three of the multi-class per-
formance metrics proposed by [33] were computed. The three computed metrics are 
macro-averaging sensitivity (Se), macro-averaging specificity (Sp), and average accuracy 
(Acc). All these metrics are based on the confusion matrix of the classifier, and their for-
mulas are the following:

where l is the number of participants (classes), Tpi are the true-positive classifications, 
Tni are the true-negative classifications, Fpi corresponds to the false-positive classifi-
cations and Fni corresponds to the false-negative classifications; all of them of the ith 
subject.

For increasing the reliability of the experimental results, a tenfold cross-validation was 
used. The same process described in Sect. 3.3.1 was followed to obtain balanced folds. 
This stage used the data that were not used during optimization. Finally, the best feature 
was the one that produced the highest three performance metrics.

3.4  Channel selection

Channel selection is divided into two main stages. The first is responsible for evaluating 
each channel individually, while the second looks for the optimal number of channels.

3.4.1  Single‑channel evaluation

For evaluating each channel individually, the “good” features were first selected based 
on the results obtained after applying the process described in Sect. 3.3. A feature was 
considered “good” if at least three classifiers achieved a performance higher than 85% in 
all evaluation metrics. This selection was performed independently for the two datasets.

Once the good features were identified, new data matrices were created for each sub-
ject. The dimension of the matrices was t × n , where t is the number of trials of each 
subject and n corresponds to the concatenation of the good features using a single chan-
nel. These new matrices were created for all available channels, resulting in matrices for 
each channel instead of each feature. Subsequently, the new dataset was divided in the 
same way as before, i.e., 20% for optimization and 80% for evaluation.

This study used a MLP to perform the channel evaluation due to its potential to find 
patterns in complex datasets. This classifier was optimized using the same approach 
described in Sect.  3.3.1. Note that a single MLP was optimized for all channels. For 

(26)Se =

(

l
∑

i=1

Tpi

Tpi + Fni

)

/l,

(27)Sp =

(

l
∑

i=1

Tni

Tni + Fpi

)

/l,

(28)Acc =

(

l
∑

i=1

Tpi + Tni

Tpi + Fni + Fpi + Tni

)

/l,
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optimizing a single MLP, the optimization folds of each channel were joined into a sin-
gle fold. Consequently, each fold contained the same amount of information from each 
channel and continued to have a balanced selection in terms of subjects. In this way, we 
maintained the impartiality of the classifier over the channels.

Table 2 contains the results of MLP optimization for each dataset. After the optimiza-
tion, the channels were evaluated individually using the optimized MLP and the correct 
classification rate (CCR) as a performance metric. The CCR is defined as:

This evaluation was used to find the best channel to develop a biometric system using a 
single EEG channel. It also allowed ordering the channels from best to worst based on 
the CCR to perform the subsequent analysis.

3.4.2  Optimal number of channels assessment

This assessment worked only with the best feature and classifier found in Sect.  3.3, 
which was standard deviation. The assessment consisted of analyzing the performance 
of the classifier with the three metrics explained in Sect. 3.3.3 using a different number 
of channels starting from a single channel until reaching the total available channels for 
each dataset. The variation was made progressively, increasing one channel each time.

This study proposes to use the channel ordering method described in the previous sec-
tion. For this reason, to demonstrate the efficiency of the proposed method, a compari-
son was made against a random ordering. For the random ordering method, the results 
of 10 executions (10 different ways to sort channels) were averaged. Subsequently, a 
multivariate analysis of variance (MANOVA) was conducted to determine the optimal 
number of channels for each method. The MANOVA is a method for testing statisti-
cal significance in differences among multivariate sample means and is the multivariate 
extension of the univariate analysis of variance (ANOVA). This method offers advan-
tages over conducting ANOVA test for each dependent variable, at the cost of added 
complexity, as it reduces the likelihood of type 1 errors, i.e., wrongly rejecting a true 
null hypothesis, and captures correlations among combinations of independent variables 
[34]. In this scenario, the optimum corresponds to the number of channels from which 
that number is no longer an influencing factor in the performance of the classifier.

(29)CCR =
TP + TN

TP + TN + FP + FN
.

Table 2 Best hyperparameters for single‑channel evaluation using MLP with DEAP and BIOMEX‑DB 
datasets

Hyperparameter Best for DEAP Best for BIOMEX-DB

Net specification (127, 127) (127, 127)

Learning rate 1e‑3 1e‑3

Batch normalization False False

Dropout False True

Dropout percentage NA 10

L2 regularization False False

L2 reg. value NA NA

Epochs 500 500
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The MANOVA analyzed the results varying the number of channels from all until a 
single channel. Consequently, the optimal number of channels is the least number of 
channels that maintain a p-value greater than 0.05. To verify if there was a significant 
difference between the proposed ordering method and the random ordering, the lowest 
performance metric among the Se, Sp, and Acc was selected to perform a Wilcoxon test 
between both methods. This test was applied independently for each channel evaluation, 
i.e., 1 channel, 2 channels, . . . , c channels , where c is the total amount of channels.

4  Experimental results
The results and analysis are divided into feature selection, single-channel evaluation, and 
the optimal number of channels assessment. Moreover, the results for each dataset are 
presented separately.

4.1  Feature selection

Figure 1 shows a graphic representation of the sensitivity of the classifiers using the 19 
features mentioned in Sect. 3.2 for the case of DEAP dataset. The features are ordered 
from best to worst based on the best classification results. The best feature was standard 
deviation per wavelet coefficient using a MLP, while the worst was skewness per wavelet 
coefficient using RF. Figure 2 illustrates the difference between those two features using 
the confusion matrix of the MLP.

Sensitivity is shown in this section because it was the lowest performance metric 
and it helps to distinguish between features. Accuracy and specificity were also cal-
culated but not presented in this section. Figure 1 shows that even though complex-
ity features can be useful for other applications such as medical applications, they do 
not seem to be the most suitable choice for developing biometric systems. On the 
contrary, some of the spectral and wavelet features appeared to be a better option for 

Fig. 1 Boxplots of the feature categories grouped by classifier using DEAP dataset
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developing these systems. However, it is worth mentioning that not all wavelet-based 
features lead to high results; for example, the worst feature (skewness) belongs to this 
category.

For BIOMEX-DB, Fig. 3 shows the sensitivity boxplots of the classifiers with each 
feature. For this dataset, complexity and spectral features did not lead to results as 
good as those obtained with some wavelet features. Besides, this figure helped to ver-
ify that the performance of the system heavily relies on the classifier. For example, 
the performance using the minimum of the DWT coefficients varies a lot using MLP 
regarding RF. As in the case of DEAP, the best feature was standard deviation using 

Fig. 2 Confusion matrices of the best and worst feature for DEAP dataset using the MLP classifier

Fig. 3 Boxplots of the feature categories grouped by classifier using BIOMEX‑DB dataset
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a MLP and the worst feature was the skewness using kNN. The difference between 
these two features using the MLP is depicted in Fig. 4.

4.2  Single-channel evaluation

For evaluating each channel of the DEAP dataset; the wavelet-based features: Std, 
Energy, Var, Max, Entropy, and Min were the features that fulfilled the requirements 
explained in Sect. 3.4.1. There were also two spectral features: PSD and TAP. Using these 
features and the optimized MLP (Table 2), the single-channel evaluation was performed. 
Table 3 exhibits the 32 available channels ordered from best to worst based on their cor-
rect classification rate. Figure 5 aids to visualize how the channels were placed and the 
order found with the MLP. By analyzing this figure, the best channels were those located 
in the central area of the scalp.

Fig. 4 Confusion matrices of the best and worst feature for BIOMEX‑DB dataset using the MLP classifier

Table 3 DEAP dataset channels in descending order by their correct classification rate

Channel CCR (%) Channel CCR (%)

Pz 39.06±3.40 P3 32.89±2.73

FC1 36.05±4.04 P4 32.58±2.76

FC2 35.90±3.52 FC5 32.58±2.10

Oz 35.16±2.64 T8 32.46±2.29

Cz 35.12±3.31 C3 32.15±2.10

CP2 35.04±1.26 AF4 31.84±2.71

F4 35.00±2.76 Fp1 31.64±2.49

PO4 34.88±1.86 C4 31.17±2.12

O1 34.49±2.68 O2 31.05±3.19

Fz 34.34±1.94 P7 31.02±3.40

CP5 34.06±3.01 FC6 30.94±1.49

AF3 33.98±1.77 P8 30.78±2.34

F8 33.67±1.70 F3 30.51±2.27

PO3 33.48±2.61 Fp2 30.08±3.05

CP1 33.24±2.52 T7 29.10±1.98

CP6 33.12±2.07 F7 26.45±1.65
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On the other hand, the best performing features for the BIOMEX-DB dataset were one 
spectral feature (RelPow) and seven wavelet-based features: Std, Energy, Entropy, Var, 
RWE, Max, and Min. Table 4 presents the 14 available channels ordered descending by 
their CCR. As with DEAP, for better visualization of the results, Fig. 6 indicates the loca-
tion of the channels and their corresponding order for the BIOMEX-DB dataset. For this 
dataset, the best channels tend to be located on the right side of the scalp.

4.3  Optimal number of channels

Figure 7 illustrates the results of the analysis of the number of channels. The proposed 
methods started using one channel and then increasing by one the number of selected 
channels until using all available channels. The channels were added following the order 
presented in Table 3 and a random ordering. As before, only the sensitivity is presented 
due to this metric was the lowest. This figure encouraged the subsequent analysis to find 
the optimum number of channels.

Table  5 contains the results of the statistical analyses using MANOVA and Wil-
coxon tests for the DEAP dataset. In this table, the first column shows the number of 
channels. The second column shows the p-value from comparing between the MLP 
sensitivity with n channels and n+ 1 channels. The third column shows the p-value 

Fig. 5 Channels position and order for the DEAP dataset. In (b), 1 corresponds to the best channel while 32 
to the worst

Table 4 BIOMEX‑DB dataset channels in descending order by their correct classification rate

Channel CCR (%) Channel CCR (%)

AF3 50.60±1.70 FC6 32.69±1.26

P8 38.55±1.58 T7 32.42±1.55

AF4 37.52±1.15 F7 31.87±1.10

F8 34.73±1.63 T8 31.73±0.49

F4 33.46±1.34 O1 30.77±1.89

O2 33.12±1.79 FC5 30.64±1.28

F3 32.92±1.14 P7 27.84±1.05
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from comparing between the sensitivity achieved by a random selection method with 
n channels and n+ 1 channels. The fourth column shows the p value resulting from 
the Wilcoxon test between the proposed method and a random selection. 

A p value less than 0.05 in the MANOVA analysis means that the number of channels 
impacts the overall performance of the system. The results of this analysis shows that the 
proposed MLP was statistically better than randomly selecting the order of the channels 
because by using the proposed MLP, the optimal number of channels was 11, while by 
using the random selection, this number increases to 25. On the other hand, for the Wil-
coxon Test, a p value less than 0.05 is interpreted as a statistically significant difference 
between the evaluated methods. These results verified that there is a difference between 
the results of the two methods in almost all the cases indicating the efficiency of the 
proposed selection method. In the Tables 5 and 6, bold values are p-values less than 0.05, 
and the values with * correspond to the optimal number of channels.

Due to the results mentioned above, the suggested biometric system for the DEAP 
dataset has the following characteristics: EEG recordings of 1.75 seconds using the best 
11 channels selected by the proposed MLP, and standard deviation extracted from a 

Fig. 6 Channels position and order for the BIOMEX‑DB dataset. In (b), 1 corresponds to the best channel 
while 14 to the worst

Fig. 7 Comparison between proposed method for ordering channels (shown as MLP) with respect to a 
random ordering using DEAP dataset
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three-level DWT as a feature. Figure 8 illustrates the difference in the sensitivity of the 
classifiers using the proposed number of channels regarding using all available channels. 
In both cases, the classifiers were evaluated using the standard deviation per wavelet 
coefficient. Despite the difference in the classification performance between using all 
the available channels and the proposed optimum, the previously mentioned MANOVA 
showed that this difference is not statistically significant.

In the case of the BIOMEX-DB dataset, Fig. 9 compares the proposed method for 
selecting the channels with a random selection, while varying the number of channels. 

Table 5 Statistical analysis of sensitivity, using DEAP dataset

The columns show: first, the number of channels; second and third columns, the p‑value from comparing the MLP and 
random sensitivity with n and n+ 1 channels, respectively; and the last column, the p‑values of the Wilcoxon test between 
the proposed method and a random selection

MANOVA Wilcoxon Test

Selection Method MLP Random

Number of channels p value p value p value

32 channels – – –

31 channels 0.192 0.897 0.236

30 channels 0.981 0.801 0.032
29 channels 0.903 0.423 0.735

28 channels 0.969 0.710 0.138

27 channels 0.982 0.993 0.483

26 channels 0.987 0.781 0.211

25 channels 0.976 0.423* 0.481

24 channels 0.936 0.029 0.107

23 channels 0.999 0.018 0.020
22 channels 0.991 0.005 0.006
21 channels 0.515 3.19e-04 0.002
20 channels 0.577 2.06e-05 0.012
19 channels 0.737 2.65e-07 0.010
18 channels 0.873 3.74e-10 0.004
17 channels 0.924 1.29e-13 0.004
16 channels 0.902 2.2e-16 0.002
15 channels 0.344 2.2e-16 0.020
14 channels 0.556 2.2e-16 0.002
13 channels 0.422 2.2e-16 0.002
12 channels 0.221 2.2e-16 0.002
11 channels 0.076* 2.2e-16 0.002
10 channels 0.004 2.2e-16 0.002
9 channels 2.20e-05 2.2e-16 0.002
8 channels 1.06e-11 2.2e-16 0.002
7 channels 1.03e-11 2.2e-16 0.002
6 channels 2.2e-16 2.2e-16 0.002
5 channels 2.2e-16 2.2e-16 0.002
4 channels 2.2e-16 2.2e-16 0.002
3 channels 2.2e-16 2.2e-16 0.002
2 channels 2.2e-16 2.2e-16 0.002
1 channel 2.2e-16 2.2e-16 0.084
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The optimal number of channels is identified using the same statistical analysis used 
with DEAP dataset. In this case, that number is 13 channels.

Table  6 contains the resulting p-values of the statistical analysis. This table fol-
lows the same structure of Table  5 explained above. For this dataset, the results of 
the MANOVA indicate that for both methods, the optimal number of channels is 
13. Despite this result, in general, the p-values of the proposed MLP were less than 
the ones of the random selection. Moreover, the equality in the optimum could be 
because, in this dataset, the channels used for recording the EEGs were located at the 
left and right zones of the scalp. However, the results presented in Sect. 4.2 for the 
DEAP dataset, which uses more EEG channels distributed over a wider area, indicate 
that the best channels are located on the center of the scalp.

Besides, the Wilcoxon test results verified that the two evaluated selection meth-
ods are statistically different in almost all scenarios. The only scenario where these 
methods were not statistically different was when working with a single channel. 
This result was expected since when working with a single-channel biometric sys-
tem, it is extremely difficult for the results of using a specific channel to be better 
than the results of using any other channel.

Fig. 8 Comparison between the classifiers performance using the proposed optimum number of channels 
(11) with respect to all available channels (32) using DEAP dataset

Fig. 9 Comparison between proposed method for ordering channels (MLP) with respect to a random 
ordering using BIOMEX‑DB dataset
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Resulting from the above mentioned results, the proposed biometric system for 
the BIOMEX-DB dataset has the following characteristics: EEG recordings of 1.75 
seconds using the best 13 channels selected by the proposed MLP, and standard 
deviation extracted from a three-level DWT as a feature. As with DEAP, Fig. 10 con-
tains the results of the comparison between the proposed biometric system regard-
ing the biometric developed using all the available EEG channels.

5  Limitations
This section provides an analysis of identified limitations of our work. These limitations 
could be address with ideas mentioned in the future work but were considered outside 
the scope of the study.

Table 6 Statistical analysis of sensitivity, using BIOMEX‑DB dataset

The columns show: first, the number of channels; second and third columns, the p‑value from comparing the MLP and 
Random sensitivity with n and n+ 1 channels, respectively; and the last column, the p‑values of the Wilcoxon test between 
the proposed method and a random selection

MANOVA Wilcoxon Test

Selection Method MLP Random

Number of channels p-value p-value p-value

14 channels – – –

13 channels 0.064* 0.068* 0.037
12 channels 0.001 2.5e-05 0.020
11 channels 6.37e- 06 5.87e-12 0.010
10 channels 4.84e-09 2.2e-16 0.002
9 channels 1.27e-15 2.2e-16 0.003
8 channels 2.2e-16 2.2e-16 0.004
7 channels 2.2e-16 2.2e-16 0.005
6 channels 2.2e-16 2.2e-16 0.006
5 channels 2.2e-16 2.2e-16 0.007
4 channels 2.2e-16 2.2e-16 0.008
3 channels 2.2e-16 2.2e-16 0.009
2 channels 2.2e-16 2.2e-16 0.027
1 channels 2.2e-16 2.2e-16 0.375

Fig. 10 Comparison between the classifiers performance using the proposed optimum number of channels 
(13) with respect to all available channels (14) using BIOMEX‑DB dataset
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The search space of all combinations of features and channels grows exponentially. 
Therefore, we limited this study to find the best feature and the minimum number of 
channels.

The two databases that were used in this study only include data from a single session. 
This could potentially affect the quality of the biometric features that need to be con-
sistent over time for the same subject. BIOMEX-DB is a dataset specifically created for 
biometrics but only includes one session.

Recent studies [35] show promising results with deep neural networks that tackle the 
feature extraction as part of their architecture. It would be interesting to contrast our 
work with these new architectures to evaluate the results in both cases.

6  Conclusions and future work
The main contribution of this work is a methodology to select the best feature and the 
optimal number of channels for developing a biometric system based on EEG signals. 
This study worked with two datasets independently to evaluate the effectiveness of the 
proposed methodology. Moreover, nineteen features belonging to three categories (spec-
tral, complexity, and wavelet-based) were described and evaluated in this investigation.

The experimental results using two different datasets showed that wavelet-based fea-
tures are the best option for developing biometric systems based on EEG signals. Addi-
tionally, the standard deviation per wavelet coefficient proved to be the most efficient 
feature among all the analyzed features in this study to represent the differences between 
the subjects effectively. On the contrary, although the complexity features are commonly 
used in medical applications, they generally led to the lowest performance in this study.

Additionally, the evaluation of the EEG channels showed that it is not necessary to use 
all available ones. For instance, in the case of the DEAP dataset, using approximately 
one-third of the available channels produced results statistically equal to those obtained 
with all channels. This reduction in the number of channels is highly beneficial since it 
decreases the computational cost and increases the portability of the final system. More-
over, the experimental results seem to indicate that the best channels for developing bio-
metric systems are located on the center of the scalp. The results show the viability of 
biometric systems based on EEG signals because a judicious selection of characteristics, 
based on an analysis as described in this paper, enables the implementation of an effi-
cient and relatively simple biometric system.

As future work, there are many directions of research; here, we include the main ideas 
that we consider worth exploiting in the future.

• Include an in-depth analysis of the standard deviation to understand why this feature 
can effectively represent the differential factors of each subject.

• Analyze the impact of the location of the EEG channels on the overall performance 
of the system because this can significantly increase the understanding of the factors 
that influence the performance of EEG-based biometric systems.

• Consider collecting EEGs over several sessions to guarantee the robustness of the 
biometric features over time.

• Explore multivariate feature selection to find out the performance of combining fea-
tures.
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• Evaluate different architectures including deep neural networks because the MLP 
was the best classifier for both datasets indicating that neural networks are a promis-
ing approach.
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