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Abstract 

The integration of smart homes into smart grids presents numerous challenges, 
particularly in managing energy consumption efficiently. Non-intrusive load manage-
ment (NILM) has emerged as a viable solution for optimizing energy usage. How-
ever, as smart grids incorporate more distributed energy resources, the complexity 
of demand-side management and energy optimization escalates. Various techniques 
have been proposed to address these challenges, but the evolving grid necessitates 
intelligent optimization strategies. This article explores the potential of data-driven 
NILM (DNILM) by leveraging multiple machine learning algorithms and neural net-
work architectures for appliance state monitoring and predicting future energy 
consumption. It underscores the significance of intelligent optimization techniques 
in enhancing prediction accuracy. The article compares several data-driven mecha-
nisms, including decision trees, sequence-to-point models, denoising autoencoders, 
recurrent neural networks, long short-term memory, and gated recurrent unit models. 
Furthermore, the article categorizes different forms of NILM and discusses the impact 
of calibration and load division. A detailed comparative analysis is conducted using 
evaluation metrics such as root-mean-square error, mean absolute error, and accuracy 
for each method. The proposed DNILM approach is implemented using Python 3.10.5 
on the REDD dataset, demonstrating its effectiveness in addressing the complexities 
of energy optimization in smart grid environments.

Keywords: Smart grid, Energy management systems (EMS), Non-intrusive appliance 
load monitoring (NIALM), Machine learning, Deep learning

1 Introduction
Smart grids are essential for modernizing and optimizing the energy distribution sys-
tem. They utilize advanced technologies to intelligently manage the generation, distribu-
tion, and consumption of electricity [1]. Even though smart grid has numerous benefits, 
they also have certain drawbacks like the lack of granular visibility into energy consump-
tion at the appliance level, limited ability to detect [2], diagnose energy faults or abnor-
malities in real-time and facing challenges in implementing demand response programs 
effectively. In order to overcome these issues, non-intrusive load monitoring is neces-
sary, which helps by disaggregating the overall energy consumption data that provides 
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detailed insights into individual appliance usage and also enabling the timely detection 
of abnormalities by accurately identifying appliance-level energy demands [3, 4]. NILM 
also enhances the functionality and efficiency of smart grids. It provides granular vis-
ibility into appliance-level energy consumption, enables real-time fault detection and 
diagnosis [5], and facilitates precise demand response strategies. Overall, NILM com-
plements smart grid technology and helps overcome several limitations such as lack of 
granular visibility, inefficient resource allocation, difficulty in identifying energy wastage, 
inability to adapt to dynamic energy demands and promoting a more effective and sus-
tainable energy management system [6].

1.1  Problem statement

NILM brings challenges in energy management, appliance identification, demand 
response programs, and fault detection. Accurate predictions are necessary to ensure 
efficient energy usage, promote sustainability, optimize demand response strategies, 
and proactively identify and address faults in the energy system. By analyzing historical 
energy consumption data and utilizing predictive modeling techniques, NILM can fore-
cast future energy consumption patterns of appliances. This information enables utili-
ties and grid operators to anticipate peak demand periods and allocate energy resources 
accordingly, ensuring a reliable and efficient energy distribution system. Consumers 
can also gain valuable insights into the efficiency of their devices and make informed 
choices about energy-efficient alternatives. This empowers consumers to optimize their 
energy usage, reduce waste, and contribute to overall sustainability goals. Anomalies or 
deviations can be identified in comparing predicted energy consumption with actual 
energy consumption, indicating potential equipment malfunctions or energy losses. This 
enables timely maintenance and repair interventions, preventing energy wastage and 
enhancing grid reliability. Prediction analysis, therefore, plays a crucial role in enhancing 
the capabilities and effectiveness of NILM in achieving efficient energy usage within the 
smart grid.

The present article emphasizes the importance of prediction analysis in NILM. By 
employing prediction techniques, it becomes possible to gain insights into the energy 
consumption patterns of different appliances. This information is critical for effective 
energy management and optimization within a smart grid.

1.2  Literature survey

Non-intrusive load monitoring (NILM) is a technology used to analyze and identify 
individual appliances and their energy consumption in a building without the need 
for intrusive hardware installations. It has gained significant interest in both academic 
and industrial sectors due to its potential for unlocking smart home services and 
opportunities. NILM can be implemented using deep learning techniques, such as 
convolutional neural networks and k-nearest neighbors classifiers, to process meas-
ured power transient responses and detect appliances in real time [7, 8]. While intru-
sive load monitoring (ILM) requires attaching low-end meter devices to appliances, 
NILM only requires a single point of sensing, making it a more cost-effective and flex-
ible solution. Future developments in load monitoring are expected to combine the 
benefits of NILM with individual power measurement by smart plugs and appliances, 
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creating hybrid solutions [9]. The utility of NILM extends to various applications, 
including energy scorekeeping, condition monitoring, and activity tracking in smart 
grid systems [10]. Real-time load disaggregation, which involves identifying simul-
taneous switching operations, remains a challenging problem in NILM. However, 
recent research proposes practical solutions using adaptive-window based detection 
and deep dictionary learning models with sparse coding algorithms [11]. Additionally, 
the use of convolutional neural networks with differential input has shown improved 
performance in appliance-level load monitoring services [12].

The evolution of prediction techniques used in non-intrusive load monitor-
ing (NILM) has been driven by advancements in machine learning and data analy-
sis [13–15]. Various machine learning algorithms such as artificial neural network 
(ANN), support vector machines (SVM), k-Nearest Neighbor (k-NN), hidden Markov 
model (HMM), decision tree (DT), random forest (RF), and deep learning (DL) 
have been utilized for load disaggregation methods based on pattern recognition in 
NILM. By incorporating appliance state transitions, HMMs can accurately infer the 
appliance responsible for specific energy consumption patterns. This approach has 
demonstrated promising results in appliance-level energy disaggregation [16] and 
has become a foundational technique in NILM research. Similarly, [17] focuses on 
exploiting the sparsity property of hidden Markov models (HMMs) to perform online 
real-time non-intrusive load monitoring (NILM). By leveraging the inherent sparsity 
structure in NILM problems, the proposed method achieves efficient and accurate 
energy disaggregation. The use of SVM with linear and radial basis function (RBF) 
kernels has been extensively examined in NILM research to analyze energy consump-
tion. These studies incorporate features like active-reactive power and power factor 
[18]. Furthermore, to mitigate the impact of noise, the wavelet shrinkage method was 
employed. Another recent study utilized the GA method to optimize the parameters 
of the RBF kernel [19]. In a research investigation where data samples were collected 
from the overall load signal using a sliding window approach, a study utilized the 
multi-label k-NN method for device identification [20]. Furthermore, recent advance-
ments have shown improved classification performance by combining k-NN and 
template matching techniques [21]. In another study, an enhanced algorithm called 
improved k-nearest neighbors (IKNN) was introduced to reduce computation time 
for learning and enhance classification performance [22].

Decision tree (DT) is not commonly preferred for load disaggregation due to its lower 
success rate compared to other pattern recognition methods. In a comparative study of 
three pattern recognition methods, k-nearest neighbors (k-NN) is emerged as the most 
successful method, while DT fell short of achieving the desired level of success [23]. 
However, there have been instances where DT yielded more successful results in low 
sampling frequency systems, outperforming the hidden Markov model (HMM) method 
in a study that prioritized low sampling [24]. Another study employed genetic algorithm 
(GA) for feature extraction and feature selection, where DT and multilayer perceptron 
(MLP) methods exhibited a high degree of accuracy at 99.5% [25]. The random forest 
(RF) method, which utilizes multiple decision trees for learning, has also been explored 
in some studies [26]. In a comparative study of DT, RF, k-NN, and support vector 
machine (SVM) methods with admittance-based feature extraction, the SVM method 
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yielded the most successful results, with DT and RF falling short compared to the other 
methods [26].

However, there is a lack of comprehensive studies that compare these methods in 
detail regarding performance. As a result, it remains uncertain which of these methods 
is more effective in NILM. Furthermore, the performance of these methods can vary 
depending on the types of devices used and the features extracted from them. Overall, 
the evolution of these techniques in NILM has allowed for a more detailed estimation of 
appliance-level energy consumption. These advancements improve energy management, 
demand response strategies, fault detection, and energy conservation practices within 
smart grid systems (Table 1).

1.3  Key contributions

1. Classification of appliance state using K means clustering.
2. Achieving load disaggregation using mapping mechanism.
3. Removing the impact of voltage fluctuations and measurement errors using calibra-

tion technique.
4. Design of combinatorial optimization to reduce the misaccounted power and facili-

tate the proper state assignment to mains.
5. Implementation of gated recurrent unit (GRU) to the appliance dataset for power 

consumption forecasting.

Table 1 Literature survey of NILM

References Objective Method Limitations Proposed solution

[27] To analyze the residen-
tial energy usage

Multi-label classifica-
tion algorithm

Algorithm works 
well only for certain 
datasets

Helps power companies 
for monitoring energy 
usage by improving 
accuracy

[28] Predicting the daily 
power generation and 
radiance data from a 
solar plant

LSTM, CNN-LSTM, 
Autoencoder LSTM

Can compare with 
other ML algorithms

The dataset can be 
applied for advanced 
deep learning algo-
rithms to improve 
accuracy

[29] Accurately access 
the performance of 
renewable energy 
communities (REC)

Random forest algo-
rithm

The different types 
of loads were not 
discussed

Can propose different 
classification process 
for differentiating the 
loads and analyze the 
performance

[30] Integrating the renew-
able energy sources 
with smart grid and 
promoting wireless 
communication for 
transferring the data

Advanced Solana 
Blockchain

Can enhance in terms 
of load prediction

Can implement in 
real time and also can 
enhance parallel multi-
task scheduling of load 
appliances

[31] Load prediction Bagging model – A comparative analysis 
between the proposed 
model and deep learn-
ing models

[32] User comfort, cost 
minimization

Deep reinforcement 
learning

– Can be implement in 
real time
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1.4  Organization

This paper addresses the challenges of load degradation in non-intrusive load moni-
toring (NILM) when prediction analysis is not performed, as discussed in Sect.  2. In 
Sect. 1.2, the literature survey explores various NILM algorithms incorporating predic-
tion analysis. Section 3 presents the implementation of the proposed NIALM approach, 
illustrated through a flowchart. The results and analysis of the proposed approach are 
presented in Sect.  4. To conclude, Sect.  5 summarizes the current state of research, 
emphasizing the focus on enhancing NILM accuracy in recent studies.

2  Methodology
NILM (non-intrusive load monitoring) is an integral part of the smart grid infrastructure. 
By using advanced algorithms, NILM allows for the disaggregation and analysis of energy 
consumption at the individual appliance level without additional metering. This enables 
real-time monitoring of appliance-level energy usage, aiding in demand response pro-
grams, load balancing efforts, fault detection, and accurate billing. NILM enhances energy 
management within the smart grid ecosystem by providing detailed insights into indi-
vidual appliance energy consumption. Figure 1 denotes working outline of the smart grid 
employing DNILM. It can be observed that there are two paths, one denoting the power 
flow represented in bold and other is information flow represented in dotted line. In this 
study, power flow assumes as unidirectional flow from utility to the consumer, whereas 
information transfer takes place in utility side as well as consumer side. Utility-side infor-
mation exchange can be observed in communication loop. Major bridge between the util-
ity and the consumer for the information flow is smart meter. Central server also called 
as SCADA receives the information from the utility as well as consumer. Server sends the 
request to the smart meter through a gateway for the consumer-side information regarding 
power consumption and scheduled loads. Once the server gets the information from all 
the meters, an appropriate control is applied to maintain the stability of the grid. In other 
way, utility sends the information regarding the tariffs and the incentives power consump-
tion patterns to the smart meter, which enables the consumer to implement the smart 

Fig. 1 Smart grid outline with DNILM
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scheduling process to achieve cost optimization. This architecture becomes further com-
plex with the involvement of distributed energy resources into the grid.

The residential energy datasets (REEDs) [33] offer a widely used dataset called the REDD 
dataset. This dataset consists of detailed energy consumption measurements from multi-
ple households. One of the residences included in the REDD dataset for NILM research is 
House 2, situated in Austin, Texas, USA. From April to May 2011, high-frequency electric-
ity measurements were collected in this single-family residence with a sampling rate of 1 
Hz. The dataset provides voltage and current waveforms recorded at the household’s mains, 
offering valuable insights into the energy consumption patterns.

2.1  Load division through mapping

The mapping process in non-intrusive load monitoring (NILM) involves estimating the 
energy consumption of individual appliances based on the aggregate energy signal. The 
aggregate energy signal represents the total power consumption (P) of all appliances in the 
building at any given time. It is denoted as A(t), where t is the time index and i represents 
the specific appliance or load as given in (1). NILM models often consider the aggregate 
energy signal as a linear combination of the individual appliance energy consumptions, 
with an added noise term N(t) representing the noise component, as shown in (2).

Relevant features, such as power, voltage, or current, are extracted from the aggregate 
energy signal at various time intervals. These features are denoted as Fj(t) , where j rep-
resents a specific feature. NILM algorithms use machine learning techniques to clas-
sify and associate the extracted features with individual appliances. This classification 
process involves learning the model’s parameters to differentiate between appliances 
based on their feature patterns. Once the appliances are classified, the mapping equation 
shown in (3) is used to estimate the energy consumption of each appliance at a given 
time t.

Here, f represents the mapping function that maps the extracted features to the esti-
mated energy consumption of the specific appliance, Pt . Each day is converted into 
sequences with time t ∈ [1,T ] . If there is a load division to two mains mains1 ( L1) ) and 
mains2 ( L1) ), then the total power can be represented as (4) and the power measured for 
each mains individually is represented as (5) and (6). Equation (7) represents the set of 
powers measured by individual appliances in the mains at T different time instants.

(1)Pt = [P1,P2, . . . ,PT ]

(2)A(t) = Pt + N (t)

(3)Pt = f (Fj(t))

(4)Pt =αL1 + αL2

(5)αL1 =

b

i=1

αi
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The total number of appliances (g) is the sum of appliances in mains1 (b) and mains2 (l), 
respectively, where b and l are the mutually exclusive sets of appliances that are subsets 
of g.

To make extracting patterns from the primary signal easier, the appliances are sorted 
in decreasing order of their peak power. Starting with the appliance having the highest 
peak load, the power of each primary signal is always compared.

If the αL1 > αi at any time, then the appliance is assigned to that main1, similarly 
to mains 2 if αL2 > αi it is assigned to mains2. If this approach does not result in the 
assignment of any αi all to Ei(t) , we examine the times when events (B(t)) occur in the 
appliance’s power series and always the condition Bαi(t) ⊆ BE(t) needs to be satisfied to 
which appliance that is assigned to mains. An appropriate threshold ensures that minor 
voltage fluctuations are not considered events. Once an appliance has been assigned 
to a main using either of these filters, its power sequence is subtracted from the cor-
responding main signal. This simplifies the main assignment process for the remaining 
appliances.

2.2  Clustering

K-means clustering can be used as a mathematical technique for appliance classification 
and mapping based on the extracted features from the aggregate energy signal. After 
extracting the features through mapping denoted as Fj(t) , these extracted features are 
organized into a feature matrix, denoted as X, where each row represents a different time 
interval, and each column represents a specific feature. The K-means algorithm starts 
by randomly initializing K cluster centroids. Each centroid is represented as a vector, 
denoted as Ĉ(k) , where k represents the cluster index. For each feature vector in X, the 
algorithm calculates the Euclidean distance between the feature vector and each cluster 
centroid. The feature vector is then assigned to the cluster with the closest centroid. This 
can be expressed mathematically in (8). For each feature vector x̂(i) in X: Assign x̂(i) to 
the cluster with the closest centroid.

After assigning all the feature vectors to their respective clusters, the algorithm updates 
the cluster centroids based on the mean of the feature vectors assigned to each cluster. 
This can be expressed as shown in (9). For each cluster k: Update the centroid Ĉ(k) to the 
mean of the assigned feature vectors:

for x̂(i) in the cluster Ŝ(k)
Here, |Ŝ(k)| represents the number of feature vectors assigned to cluster k, and 

∑

x̂(i) 
represents the summation of assigned feature vectors. The above process related to 

(6)αL2 =

l
∑

i=1

αi, t ∈ [1,T ]

(7)αi =[αi
1,α

i
2, . . . ,α

T
1 ]

(8)k̂(i) = argmink ||x̂(i)− ĉ(k)||2

(9)Ĉ(k) = 1/|Ŝ(k)| ∗
∑

x̂(i)
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equations (3) and (4) is repeated iteratively until convergence. Convergence occurs when 
the cluster assignments and centroids no longer change significantly. Once K-means 
clustering converges, the clustering results can be used to map each feature vector to its 
corresponding appliance. Each cluster represents a distinct appliance or load, and the 
feature vectors assigned to each cluster are associated with that appliance. The cluster 
index can be used as the label or identifier for each appliance.

2.3  CO algorithm

Hart introduced the combinatorial optimization (CO) algorithm as a fundamental 
approach in the field of non-intrusive load monitoring (NILM). This algorithm assumes 
that each appliance can have multiple states, and the last value is considered as a rela-
tively small value. Each state corresponds to a specific energy consumption value associ-
ated with the appliance. The algorithm’s objective is to assign the correct operating states 
to each appliance, aiming to minimize the difference between the measured aggregate 
power and the sum of the energy consumption of all appliances. An appliance can only 
be in a single state at any given time, which is represented as (10)

At sth state at time t, the power consumption of ith appliance is given as (11):

Therefore, for all appliances, the total overall power consumption at time t is given as 
(12):

After load assignment, the error in power signal is given as (13):

Therefore, the error value p̂t depends on the classified state of the appliance and the pre-
dicted power consumption of the appliance at that particular instant. The optimization 
should be performed to select the appropriate state and predict the power consumption 
that is free from voltage fluctuations and unaccounted power. Equation  (14) gives the 
cost function for error minimization.

() can be achieved by implementing the prediction methodology to forecast the θ is . The 
predicted output for the ith appliance for T time sequences with optimization in error is 
given as (15)

(10)
K
∑

s=1

Gi
t,s = 1

(11)γ̂ i
t,s =

K
∑

s=1

Gi
t,s ∗ θ

i
s

(12)P̂t =

I
∑

i=1

K
∑

s=1

Gi
t,s ∗ θ

i
s

(13)p̂t = |Pt −

(

I
∑

i=1

K
∑

s=1

Gi
t,s ∗ θ

i
s

)

|

(14)φt = argminGt
|Pt − P̂t |
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2.4  Algorithm

The algorithm follows a series of steps. It consists of two phases: the training phase and 
the test phase. Initially, in the training phase, the algorithm receives power measure-
ments from each individual appliance. Using the k-means clustering algorithm, the load 
profile is transformed into a sequence of finite states, resulting in an appliance model. 
Once all appliances are modeled, the Combinatorial Optimization (CO) algorithm con-
structs a lookup table containing all possible combinations of operating states. In the 
test phase, the CO algorithm takes the aggregate power as input and identifies the most 
probable combination of appliance states based on the lookup table.

The widely used NILMTK toolkit, which is developed in a Python environment specif-
ically for energy disaggregation problems, was utilized to implement the Combinatorial 
Optimization algorithm.

As shown in Fig. 2, the proposed DNILM algorithm is implemented in four differ-
ent scenarios: without calibration and load division (WoC & WoLD), without load 
division and with calibration (WC & WoLD), with load division and without calibra-
tion (WoC & WLD), with load division and with calibration (WC & WLD). These 
four modes of operations are classified based on calibration and load division. In 
WoC & WoLD, WC & WoLD, initial step is to classify the state of appliance operation 

(15)Oi =
{

�i
φi
1
. . . �i

φi
T

}

Fig. 2 Workflow representation of the proposed DNILM method



Page 10 of 21Nutakki and Mandava  EURASIP Journal on Advances in Signal Processing         (2024) 2024:62 

depending on the power consumption, which is performed by the clustering tech-
nique further followed by calculating cluster centers. In WoC & WoLD process, CO 
algorithm is immediately employed after center calculation to find the best possible 
operating state of appliance, whereas in WC & WoLD, an calibration step is performed 
after center calculation to increase the efficiency. Calibration process is further dis-
cussed in this section. It can be observed from Fig. 2 that WoC & WLD is similar to 
WoC & WoLD and WC & WLD is similar to WC & WoLD except a extra load divi-
sion process is carried out before dividing into the clusters. In this load division, the 
appliance is initially divided between the mains 1 and mains 2 depending on the load 
demand. This load division divides the loads among themselves; this pre-classification 
increases the clustering efficiency further as it reduces the range of cluster. The cali-
bration of the measured power sequence plays a vital role in understanding the actual 
power consumption by the appliance. Often, the measured power is not equal to the 
appliance power consumption due to various scenarios such as voltage fluctuations, 
metering errors, inconsistency in meter measurements, electromagnetic interference 
and many other external factors. To compensate for this effect, a regularization term 
Kc is multiplied by the measured power as shown in (16). During normal conditions, 
the power change in mains equals the power consumption change in the appliance at 
a particular time instant, but if there are any external factors involved, this ratio will 
change. The meter’s increased measured power is compensated by the inverse ratio of 
the regularization term, thus maintaining the proper power measurement.

In the case of without calibration and without load division, the error after load assign-
ment p̂t1 and the estimated power consumption is given in (17). In the case of with 
calibration and without load division, the error term p̂t2 is changed as shown (18), and 
consequently, error minimization equation is modified.

In the case of without calibration and with load division, the error p̂t3 is calculated as 
given by (19).

In case of with calibration and with load division, the error p̂t4 is calculated as given by 
(20).

(16)θ isc = θ is
�αLz

�αi

(17)p̂t1 =

∣

∣

∣

∣

∣

Pt −

(

I
∑

i=1

K
∑

s=1

Gi
t,s ∗ θ

i
s

)∣

∣

∣

∣

∣

(18)p̂t2 =

∣

∣

∣

∣

∣

Pt −

(

I
∑

i=1

K
∑

s=1

Gi
t,s ∗ θ

i
sc

)∣

∣

∣

∣

∣

(19)p̂t3 =

∣

∣

∣

∣

∣

αLz −

(

I
∑

i=1

K
∑

s=1

Gi
t,s ∗ θ

i
s

)∣

∣

∣

∣

∣



Page 11 of 21Nutakki and Mandava  EURASIP Journal on Advances in Signal Processing         (2024) 2024:62  

Therefore depending on the case selected, measured power of the appliance depending 
on the state of operation ( P̂t ) and depending on the error value, the appropriate state 
assignment is performed such that the next state prediction is accurate with less error.

3  Prediction
After performing the combinatorial optimization (CO) algorithm in non-intrusive 
load monitoring (NILM), the next step is often to employ a prediction model such as 
gated recurrent unit (GRU) to forecast the future energy consumption of individual 
appliances. A set of energy consumption of different appliances ait , price Rt are given 
as input. The input data, typically aggregate power measurements, are preprocessed 
to create sequences (often referred to as windows or time series) of past power values 
for each appliance. Later relevant features such as power values are extracted from 
these sequences. Now, loading the appliances data and splitting the data into Xtrain , 
Ytrain , Xtest , Ytest.later, initialize the weights ( w1,w2, . . .wn ) and biases for various com-
ponents of the GRU model, such as the update gate, reset gate, and candidate activa-
tion. Compute the reset gate activation: Multiply the input ( i1, i2, . . . in ) at the current 
time step t with the corresponding weight matrix Mr , add the previous hidden state 
Mn−1 multiplied by another weight matrix M, and apply an activation function to get 
the reset gate activation.

Multiply the update gate activation with the previous hidden state hn−1 , element-wise. 
Multiply ( 1− Ut with the candidate activation, element-wise. Sum these two results to 
obtain the new hidden state as shown in (21).

Iterate over each time step t in the input sequence and perform the following operations:
a. Compute the outputs ( o1, o2, . . . on ) of the GRU cell at that time step t, using the 

input ( i1, i2, . . . in ) at the current time step t and the previous hidden state hn−1.
b. Save the current hidden state h for the next time step t1.
After processing all time steps and layers, the final hidden state will be left, which 

represents the encoded information of the input sequence and that final layer is used 
to make predictions.

Once the GRU model is trained, it is tested using the test data Xtest , Ytest . Given 
a sequence of past power values, the GRU model processes the sequence and gen-
erates a predicted energy consumption value for the next time step. By calculating 
root-mean-square error (RMSE) and mean absolute error (MAE), you can assess the 
accuracy and performance of your GRU model in predicting the output values on the 
test set.

(20)p̂t4 =

∣

∣

∣

∣

∣

αLz −

(

I
∑

i=1

K
∑

s=1

Gi
t,s ∗ θ

i
sc

)∣

∣

∣

∣

∣

Rt = sigmoid(Mr ∗ (Mn−1,M)

Ut = sigmoid(Mr ∗ (Mn−1,M)

Zt = tanh((Mr ∗ (Rt ∗Mn−1,M))

(21)H = (1− Ut) ∗Mn−1 +Ut ∗ Zt
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4  Results
The proposed DNILM algorithm is trained with a REDD dataset with multiple sce-
narios. Most importantly, the load division among the multiple mains at the cus-
tomer and the calibration of the power consumption are considered. As discussed 
in the previous sections, these two scenarios impact the power consumption and 
effective utilization of the resources. The seven appliances considered in this study 
are subjected to DNILM under four different combinations: DNILM with calibra-
tion and without load division, DNILM without calibration and with load division, 
DNILM without calibration and load division, and DNILM with calibration and load 
division.

4.1  Load division using mapping

By using the mapping technique, load division is performed in which mains 1 is assigned 
with four appliances, namely dishwasher, kitchen, kitchen 2, and stove. Mains 2 is 
assigned with light, microwave, and refrigerator. This division through a simple map-
ping technique involves a lot of challenges, such as event conditions and unaccounted 
power. Figure 3a represents the mains 1 power with all the appliances as Fig. 3b indicates 
the power measured without any appliance; this power is identified as the unaccounted 
power. The percentage of unaccounted power calculated for mains 1 can be observed 
in Fig. 5a. Similarly, the mains 2 power and its unaccounted power are represented in 
Figs. 4a, b and 5b. These statistics emphasize the importance of calibration.

4.2  Appliance state classification

Each appliance at the customer side operates in different modes or states, leading to 
variations in their power consumption. Depending upon these states of operations, the 
power consumption can be predicted, and the load division can be performed to attain 
energy optimization. Figure 6 details the statewide operation of the multiple appliances 
considered in this study. It is observed that some appliances has three distinct states, and 
some have two distinct states. The appliance selection is performed cautiously to obtain 
the diversity in operating states. This mismatch in the number of states requires a more 
complex and robust classification algorithm.

Fig. 3 a Mains1 power consumption and b unaccounted power of Mains1
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Initially, k means clustering is performed on the raw data to identify the number of 
clusters based on the power consumption of each appliance. Later on, these clusters are 
considered as the states of operation, and each sample is labeled accordingly. Figure 7 
represents the individual appliance states.

Fig. 4 a Mains2 power consumption and b unaccounted power of Mains2

Fig. 5 a Percentage power distribution in Mains1 and b percentage power distribution in Mains2

Fig. 6 Operating states of different appliances
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Fig. 7 Operating state clustering of a dishwasher, b fridge, c kitchen1, d kitchen2, e lighting, f microwave 
and g stove
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4.3  Calibration and load division with CO scenarios

A high amount of unaccounted power and error in load assignment is observed without 
calibration and CO for load division. With the states obtained for each appliance using k 
means clustering, different cases are considered. In each case, the ability of the accuracy 
of the classification is analyzed. Figures 8 and 9 represent the state classification of each 
appliance in different scenarios in the form of confusion matrix.

It is observed that for every appliance, the classification accuracy is high with calibra-
tion and with load division case, whereas without calibration, load division suffers the 
most with less accuracy. Therefore, this states that with calibration and load division, 
there can be clear distinction, and unaccounted power can be limited. Figures 8 and 9 

Fig. 8 Operating states classification of a dishwasher, b refrigerator, c kitchen and d kitchen2
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Fig. 9 Operating states classification of a light, b microwave and c stove

Table 2 Performance analysis of ML and DL models for dishwasher appliance

Models RMSE MAE Accuracy

DT 58.21 49.5 90.8

S2P 57.77 47.86 69.01

DAE 57.77 48.3 68.7

RNN 57.01 45.7 88.5

LSTM 56.9 43.21 91.42

GRU 55.24 41.94 97.3
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Table 3 Performance analysis of ML and DL models for fridge appliance

Models RMSE MAE Accuracy

DT 121.2 71.01 91.06

S2P 47.5.4 32.8.84 44.9

DAE 46.24 33.85 45.8

RNN 50.15 23.51 92.2

LSTM 40.485 18.0 96.07

GRU 33.53 11 97.3

Table 4 Performance analysis of ML and DL models for kitchen1 appliance

Models RMSE MAE Accuracy

DT 37.49 8.83 84.17

S2P 37.4 8.84 84.7

DAE 37.5 8.22 85.0

RNN 37.4 8.92 84.26

LSTM 36.9 8.19 88.2

GRU 35.4 7.75 90.24

Table 5 Performance analysis of ML and DL models for kitchen2 appliance

Models RMSE MAE Accuracy

DT 97.47 16.24 89.1

S2P 97.1 16.02 91.1

DAE 97.7 16 91.15

RNN 96.9 15.8 92.01

LSTM 96.3 15.1 92.7

GRU 95.85 14.54 93.56

Table 6 Performance analysis of ML and DL models for light appliance

Models RMSE MAE Accuracy

DT 26.2 11.76 19.99

S2P 28.08 11.56 95.2

DAE 41.82 25.56 57.18

RNN 43.13 30.09 85.9

LSTM 41.58 26.50 88.9

GRU 25.03 6.26 95.6
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Fig. 10 Power consumption prediction using GRU for kitchen1

Fig. 11 Power consumption prediction using GRU for microwave

Table 7 Performance analysis of ML and DL models for microwave appliance

Models RMSE MAE Accuracy

DT 50.72 13.82 89.8

S2P 78.31 12.80 69.02

DAE 67.80 12.50 66.58

RNN 66.6 12.3 70.59

LSTM 37.73 10.30 92.8

GRU 14.26 4.27 99.4

Table 8 Performance analysis of ML and DL models for stove appliance

Models RMSE MAE Accuracy

DT 18.99 2.47 91.1

S2P 18.98 2.47 91.2

DAE 18.98 2.48 91.25

RNN 18.8 2.45 92.6

LSTM 18.7 2.37 92.9

GRU 18 1.9 93.89
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denote the possible combination of appliances on mains 1 and mains 2, respectively, 
based on their working time and the power consumption in the predefined time span.

4.4  Prediction analysis with GRU 

With the accurate identification of states, with performing calibration and load divi-
sion using CO, the prediction of power consumption for the next time instant is 
obtained using data-driven artificial intelligence methods. Multiple prediction algo-
rithms are analyzed such as DT, sequence-to-point (S2P), long short-term memory 
(LSTM), recurrent neural networks (RNNs), denoising autoencoders (DAEs), and 
GRU. The analysis is performed with different evaluation metrics such as RMSE, 
MAE and accuracy to finalize the better prediction algorithm. Results for predic-
tion analysis for each appliance are tabulated in Tables  2, 3, 4, 5, 6, 7 and  8. From 
the prediction analysis, it is clear that GRU, the advanced, recurrent neural network 
architecture, has a clear advantage compared to its counterparts. This algorithm dem-
onstrates superior adaptability and efficiency in managing increased data volume and 
additional monitored devices without compromising performance, whereas in terms 
of runtime, the GRU algorithm exhibits accelerated processing capabilities, enabling 
the analysis of energy consumption data. This is complemented by its optimized 
memory usage, ensuring efficient handling of computational requirements. Figures 10 
and  11 represent the prediction graphs of the microwave and kitchen; here, it can 
be observed that the proposed DNILM eliminates the voltage fluctuations and unac-
counted power from the actual data and predicts only the appliance consumption.

5  Conclusion
This paper emphasizes the significance of prediction analysis in non-intrusive load 
monitoring (NILM) within smart grids. The study demonstrates that prediction 
analysis enhances the effectiveness of NILM by enabling real-time estimation of 
energy consumption patterns at the appliance level. By employing advanced algo-
rithms and leveraging historical energy consumption data, the paper showcases 
the utility of decision trees, sequence-to-point, denoising autoencoders, recur-
rent neural networks, long short-term memory, and gated recurrent unit models 
in accurately disaggregating energy usage. The comparison of performance metrics 
validates the effectiveness of prediction models in enhancing NILM. After conduct-
ing extensive simulations, it can be concluded that the gated recurrent unit (GRU) 
method is the most appropriate approach for predicting the power consumption 
profile of an individual household. These findings have important implications 
for energy management and offer valuable insights into how different appliances 
contribute to overall energy usage within smart grids. By harnessing the power of 
prediction analysis, energy grid operators and consumers can make more informed 
decisions, implement targeted conservation measures, and optimize energy alloca-
tion, ultimately leading to more efficient and sustainable energy management in 
smart grid systems.
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5.1  Practical implications

Non-intrusive load monitoring (NILM) revolves around the need for clear guide-
lines on data privacy, security, and standardization. As NILM technology continues 
to advance, policymakers should consider establishing regulations that protect con-
sumer data while also allowing for the collection of necessary information for load 
monitoring. By implementing this technology, homeowners can benefit from accurate 
and real-time insights into their energy usage patterns. This can lead to the devel-
opment of personalized energy-saving strategies, thereby fostering efficient energy 
consumption and cost savings. Additionally, utility companies can leverage the data 
obtained through non-intrusive load monitoring to optimize grid operations, man-
age peak demands, and enhance overall energy distribution and conservation. 
Moreover, research and development in this area can pave the way for the creation 
of user-friendly interfaces and apps that empower individuals to actively engage in 
sustainable energy practices. Overall, the integration of non-intrusive load monitor-
ing in home energy management systems using machine learning techniques holds 
the potential to revolutionize the way consumers understand, consume, and manage 
energy in everyday lives.
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